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1 Problem Statement

To develop a deep learning based Reynolds-averaged Navier–Stokes (RANS) turbulence model to predict
Reynolds Stress Anisotropy tensor from the given high fidelity simulation data.

2 Introduction and Related Work

Reynolds Averaged Navier Stokes (RANS) models are widely used in industry to predict fluid flow. RANS
models rely on turbulent transport instead of fully resolving the turbulent motion. Hence, they are much
more computationally efficient as compared to the Direct Numerical Simulations (DNS) which try to resolve
different scales of flow. However, RANS models can often be inaccurate in flow predictions because they
depend on highly irregular turbulence empirical data. Earlier RANS models rely on the linear eddy viscosity
model (LEVM) for their Reynolds stress closure. LEVM assumes linear relation between Reynolds stress
and mean strain rate. However, these models provide inaccurate results in many flow cases including those
with curvature separation or impingement. Hence, Craft et al.[1] proposed a non linear eddy viscosity model
based on different combinations of products of rotation rate tensor and strain rate tensor. These did not
show a significant improvement over linear models.

Recently, machine learning techniques are used to for Reynolds stress closure problem. Tracey et al[2] used
non-parametric methods (Kernel Regression) to try to fit the error in RANS Reynolds stress predictions.
This method exhibited limited generalization capability. In later work, Tracey et al. [2] used a neural net
with single hidden layer to try to learn the Spalart-Allmaras turbulence model. Zhang et al.[3] also used
neural networks to predict correction factor in turbulence term. These methods were also ineffective in
predicting anisotropy tensor. Ling et al. [4] evaluated three different machine learning models: Support
Vector Machines, Decision Trees with Adaboost and Random Forests. Random forests gave better results
among the three methods. However, Galilean invariance cannot be enforced to predict anisotropy tensor by
using the random forests.

Deep learning [5] is a branch of machine learning which uses deep neural networks to model highly complex
functions which cannot be modelled by most other machine learning techniques. As the turbulence signal is a
heavily complex signal, deep learning methods provide a better alternative for turbulence modelling. Tracey
et al.[2] and Zhang et al. [3] used shallow neural networks with one or two hidden layers. Ling et al. [6] used
rotation invariant tensors to model anisotropy tensor’s eigenvalues which significantly improved the RANS
modelling. Moghaddam1 et al. [7] makes use of deep learning algorithms via convolution neural networks
along with data from direct numerical simulations to extract the optimal set of features that explain the
evolution of turbulent flow statistics.

3 Reynolds averaged turbulence modelling using deep neural networks
with embedded invariance.

Motivated by these advancements, Julia ling et al.[8] came up with a tensor basis neural network which is
based on invariant tensors.

3.1 Deep Neural Networks

A deep neural network consists of an input layer followed by several hidden layers followed by an output
layer (Figure 1a). Each of the layers consists of many nodes. The nodes represent the features of that layer.
The input layer will have as many input nodes as the number of features of the input. From one layer to
another, the input to the layer l (Xl) is multiplied by the weights (W) of that layer and added with a bias
term (b) which is further passed through a non-linear activation function (φ) which non-linearly scales the

2



input. The output of layer l is the input to the next hidden layer l+1. Mathematically the operation is as
follows.

Xl+1 = φ(WTXl + b) (1)

Here Rectufied Linear Unit (ReLU) is used as the non-linear activation function. It is defined as φ(x) =
max(0, x). Its modified form leaky-ReLU is used in the model.

The neural network is trained using back propagation of gradients with gradient descent algorithm. The
model is fitted to training data which trains the model to iteratively minimize the mean squared error
between the true and predicted anisotropy tensor. A neural network has mainly three hyperparameters:
the learning rate of training, number of hidden layers and the number of nodes in each layer. Optimum
parameters were decided using the Bayesian hyperparameter optimization.

3.2 Tensor Basis Neural Network

A different form of neural network is used in this method instead of a simple neural network as shown in
Figure 1b. Instead of directly formulating the stress anisotropy tensor (b) as a function of R and S, it enforces
rotational invariance by formulating b as a combination based on isotropic tensors. Rotational invariance is
a fundamental property of a fluid particle and it is necessary that any turbulence closure obeys it.

For the input tensors R and S, Pope [9] has derived relevant integrity basis of input tensors. He proves that
an eddy viscosity model that is a function of only S and R can be expressed as a linear combination of 10
isotropic basis tensors:

b =

10∑
n=1

g(n)(λ1, ..., λ5)T (n) (2)

Tensor b satisfying equation 2 satisfies Galilean invariance. These 10 tensors T (1),...,T (10) and 5 invariances
λ1,...,λ5 are described in Pope [9]. The function g(n)(λ1, ..., λ5) is determined by the deep neural network
TBNN.

Figure 1: a) Simple Neural Network, b) Tensor Basis Neural Network.
Source: Julia ling et al.[8]
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4 Neural Network Settings for the Experiemnts

Through Bayesian optimization, the following parameters were obtained as optimal parameters.

• number of hidden layers = 8,

• nodes per hidden layer = 30,

• Total number of weights = 6750

• activation function = Leaky-ReLU

• learning rate = 2.5 ∗ 10−7.

• number of input nodes: 5 (λ’s )

• number of output nodes: 10 (g’s )

• loss function: RMSE Loss

RMSE =

√√√√ 1

9Ndata

Ndata∑
n=1

3∑
i=1

3∑
j=1

(bij,m,pred − bij,m,DNS)2 (3)

The 10 scalar outputs of the neural network are multiplied to corresponding 10 tensors (T ). The sum of
these 10 values gives the predicted (b) values. These predicted values are compared with true values using
mean squared error loss function which is minimized by training the network.

5 Datasets

The following DNS datasets are publicly available for training the model.

Datasets:

• Channel Flow [10]

• Duct Flow [11]

• Flow around a Square Cylinder [12]

Detailed information about each dataset is as follows:

Channel Flow [10]:

Reynolds No. # data points
180 56
395 64
590 176

Total 296

Table 1: Channel Flow Dataset

The dataset consists of DNS data of the flow across a channel at three different Reynolds number. The flow
is symmetric across the X and Z axis. All values such as means and Reynolds stresses are same if the y value
is same, i.e. same across the XZ plane. Hence, all the data boils down to the data on a single line. This line
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Reynolds No. # data points
300 16900
600 67600
900 150544
1200 268324

Total 503368

Table 2: Duct Flow Dataset

data is provided by the author at flow Reyonolds number of 180, 395 and 590 as shown in Table 1.

Duct Flow [11]

This dataset has DNS information of the fluid flow across a square duct at four different Reynolds number:
300,600,900 and 1200 (Table 2.). The flow is symmetric about the X axis.

Flow around a Square Cylinder [12]

Flow Reynolds No = 22000

Number of data points = 1498224

The dataset contains results from DNS of turbulent flow around a square cylinder at Re=22000. A constant
velocity is imposed in the X direction. The flow is symmetric about the X-axis. A still from the dataset
recording is given in Figure 2. below.

Figure 2: Flow around a Square Cylinder.
Source: [12]
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6 Data Pre-processing

The above datasets contain raw DNS information such as coordinates, mean flow velocities, reynolds stresses
and the dissipation factor. In order to convert the data into the required information, some calculations
are required. Also, not all the data points are useful. Some of the data points are noisy and incorrect.
Pre-processing is required in order to filter out these points.

In most of the datasets, the below variables are given. If they are not present, they are assumed zero. The
notations have their standard meanings.

Given variables: x, y, z, u, v, w , u’u’, v’v’, w’w’, u’v’, v’w’, u’w’, ε.

Required Variables: R, S, b(reynolds stress anisotropy tensor)

The following steps are adopted for data formulation and pre-processing:

1. Velocity gradients dUi

dxj
are obtained from Ui and Xj where i, j ∈ (1, 2, 3). These gradients are obtained

using techplot (CFD processing software).

2. Gradients matrix Uij and its transpose Uji are generated.

3. Rotation-rate tensor (R) and strain-rate tensor (S) are obtained by

S =
1

2
∗ k
ε
∗ (Uij + Uji) (4)

and

R =
1

2
∗ k
ε
∗ (Uij − Uji) (5)

where k = u′u′ + v′v′ + w′w′ is turbulent kinetic energy and ε the turbulent dissipation rate.

4. Ground truth anisotropy tensor (b) is obtained using

bij =
u′iu
′
j

2k
− 1

3δij
(6)

where u′iu
′
j are reynolds stresses and δij is dirac delta function.

5. Some of the data points are incorrect as they have k < 0 while turbulent kinetic energy must be a
non-negetive number. Such points are filtered out from the training set.

6. Further, input to the neural network λ′s and T’s are obtained from R and S using the transformations
defined by Pope [9].
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7 Experiments

7.1 Experiment on Channel Flow Dataset:

Figure 3. shows the performance of the TBNN model on channel flow dataset. It shows the plots of true
and predicted Reynolds stress anisotropy tensor (b) against the data points. To be precise, the first 56 data
points represent Re=180, 56-120 data points represent Re=395 and the points post 120 denotes Re=590.

Figure 3: Results of TBNN model on channel flow dataset. Each of the 9 sub-figures shows true (red) and
predicted (blue) values of bij .

Conclusion:

As seen in figure 3., the model fits well on the channel flow dataset. Though the number of data points are
too less, the neural network tends to fit the points well. Many small fluctuations can be seen because the
function (neural network) has a lot of parameters or degrees of freedom. The data is insufficient to train all
the parameters which induces fluctuations. A lot more data is required to reduce the fluctuations.
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7.2 Experiments on Ductflow Dataset

7.2.1 Experiment 1: Train and test on Re=300 dataset

In the first experiment, only Re=300 dataset was used to train and test the TBNN model. This experiment
gives an idea of how well the neural network is able to model a large dataset like the ductflow Re=300 case
with 16900 data points.

Figure 4: Results of TBNN model on Ductflow Re=300 dataset. Left: True b values obtained from DNS.
Right: TBNN predicted values of b. The value increases from deep blue to deep red.

Comparison of the TBNN predictions with the ground truth values of b (DNS) is made in Figure 4. The
error in the predictions is obtained using equation (3) as

RMSE Loss = 0.028

Conclusion: As seen in Figure 4., the predictions are fairly accurate with a lot of fluctuations in between
the correct values. Visually the non-diagonal elements of b are predicted more accurately than the diagonal
elements. The boundary predictions also seems to be fairly accurate. For diagonal elements, various patterns
emerge in the predictions. The fluctuations can be smoothened (using a Gaussian kernel) to get more accurate
predictions.

RMSE loss of 0.028 suggests that each of the values of bij is off by 0.028 on an average from its true value.
Considering

bij ∈ (− 1
3 ,

2
3 ) ∀i 6= j and

bij ∈ (− 1
2 ,

1
2 ) ∀i = j

the percentage error in predictions can be calculated as

%error = RMSE Loss
range of b

∗ 100

= 0.028
1 ∗ 100

= 2.8%

Hence, the predicted values of b are 2.8 % off by the true values which is a tolerable level of error.
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7.2.2 Experiment 2: Points violating the constraints for Re=300

To ensure realizability, the following constraints are imposed on the predicted anisotropy tensor.

−1

2
≤ bij ≤

1

2
∀i = j (7)

−1

3
≤ bij ≤

2

3
∀i 6= j (8)

ε1 ≥
3|ε2| − ε2

2
(9)

ε1 ≤
1

3
− ε2 (10)

Figure 5. shows the flagged points which violates one of the above constraints.

Figure 5: Points (marked in red) violating the constraints. Sub-figure a) Violates the b22 constraint given
by equation (7). b) violates the b33 constraint given by equation (7). c) violates the eigenvalue constraint
given by equation (9). d) violates the eigenvalue constraint given by equation (10).

Each of the subfigures (a), (b), (c), (d) in Figure 5. violates a different constraint. Figure 4(a) and 4(b)
shows data points violating constraint equation (7) for b22 and b33 respectively. Figure 4(c) and 4(d) depicts
points violating the eigenvalue constraint equations (9) and (10) respectively.

Conclusion: From Figure 5., one can infer that equation (9) is the constraint violated by the most number
of points (fig. 4c) followed by equation (10) violated by a few points on the upper and lower boundaries.
A few points on left and right boundaries violate constraint (7) for b22 while a negligible number of points
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violate constraint (7) for b33. The other constraints (such as b11 and equation (8)) are not at all violated by
any of the points and hence they are not shown in the figure.

7.2.3 Experiment 3: Train and test individually for flows with different Reynolds number

To test the TBNN modelling ability with an increase in reynolds number, this experiment was conducted.
Four different models A, B, C and D were trained individually on Re=300, 600, 900 and 1200 respectively.
The results are compiled in Table 3.

Model Test Case # data points # training iterations RMSE Loss
A Re=300 16900 10000 0.028
B Re=600 67600 10000 0.034
C Re=900 150544 10000 0.057
D Re=1200 268324 10000 0.053

Table 3: Model Comparison for four different Reynolds numbers.

Conclusion: Table 3. shows the RMSE error for the four different test cases. Each of the models is trained
for 10000 iterations. The number of data points increases from 16900 for Re=300 to 268324 for Re=1200.
However, The RMSE error increases from 300 to 900 and decreases by a small amount for Re=1200. As
the reynolds number increases, the flow becomes more and more turbulent, its complexity increases and
modelling the flow becomes difficult. This explains the error increase form 300 to 900 case. However, the
error decreases a little for Re=1200 probably because of lesser noise in the dataset as compared to Re=900
case.

7.2.4 Experiment 4: Models trained on Re=300 and Re=600, tested on Re=900

In this experiment, we train the models on Re=300 and Re=600 ductflow cases and test the model’s
generalizability on Re=900 test case. Here we try three different normalization settings as explained below.
We also compare these three models with the model trained solely on Re=900 and tested on the same. The
quantitative and qualitative performance of the models are given in Table 4. and Figure 6. respectively.

Model Train dataset Normalization ? Norm. condition RMSE Loss
A Re=900 (itself) yes self norm 0.057
B Re=300 and Re=600 yes individual norm 0.069
C Re=300 and Re=600 yes same norm 0.076
D Re=300 and Re=600 no no norm 0.091

Table 4: Error comparison between different models tested on Ductflow Re=900 case.

Table 4. gives the error comparison between the four models. The meaning of normalization conditions is
as follows.

• self norm — dataset (Re=900) is normalized by its own mean and variance.

• individual norm — each dataset (Re=300, Re=600 and Re=900) is normalized individually with its
own mean and variance.

• same norm — all datasets (Re=300, Re=600 and Re=900) are normalized with a same mean and
variance.

• no norm — no normalization is used at all.
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Figure 6: Qualitative Results of TBNN model on Ductflow Re=900 dataset. (A) self norm — dataset
(Re=900) is normalized by its own mean and variance. (B) individual norm — each dataset (Re=300,
Re=600 and Re=900) is normalized individually with its own mean and variance. (C) same norm — all
datasets (Re=300, Re=600 and Re=900) are normalized with a same mean and variance. (D) no norm —
no normalization is used at all.

The models A, B, C and D given in Figure 6. have the same meaning as in Table 4. Each of the first four
columns are predictions of the four models and the last column is the ground truth value of b obtained from
DNS. Each of the six rows give the results on each bij value. bij = bji hence only six of nine values are
shown. The scale is same across a row but differs for each bij value for better visualization.

Conclusion: Comparing Table 4. and Figure 6. one can conclude the following. According to Table
4. the model trained on Re=900 data (model A) performs better than the other three models. The error
increases from model A to model D suggesting a decrease in performance. The qualitative results depict
exactly the opposite trend. Model D is seen to represents the true value much better than the other models.
The qualitative performances appears to decrease from model D to model A as against the quantitative
performances. One reason for this trend in results could be that model D predicts the extreme values well
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(extremum on the scale) but fails to predict the intermediate values correctly. Where as model A would be
predicting the intermediate values well but would not be able to predict the extreme values. Hence, visually
model A might appear to perform wrost than other models.

Discussion: The results of normalizing in different ways is as follows. Model does not predict correctly
when normalized by a different mean and std. e.g. when only Re=300 data is loaded, model predict correctly
on Re=300. But when Re=300 and Re=600 are loaded, model fails to give correct results on Re=300 case
because now the mean and std are different from what it was trained on.

Normalizing by the same mean and std deviation for all datasets also did not improve the results much. One
thing that was observed when the model was trained on Re=600, it tends to unlearn what it learned when
trained on Re=300.

To illustrate this effect, a model was trained first on Re=300 and then on Re=600. A copy of the model
was saved when training on Re=300 was done (say model A). Then another copy was saved when training
on both Re=300 and Re=600 was done (say model B). When model A was tested on Re=300 again, it
performed very well (because it is only trained on Re=300 itself). But when model B was tested on Re=300,
it did not perform well (though it was first trained on Re=300 and then trained on Re=600). The model
tends to unlearn its training on Re=300.

One of the following two things are suspected:

1. The model is generalizing to the other datasets and hence it loses its ability to predict correctly on
Re=300 dataset.

2. There are some inherent differences in the two datasets. Say for the same R and S value, there are
different true b values in Re=600 dataset than in Re=300 dataset.

7.3 Experiment on Cylinder-flow dataset

Figure 7. shows the performance of the TBNN model on flow around a square cylinder dataset. This dataset
is a very turbulent flow with a high reynolds number Re=22000. It also has a large number of data points
(1498224 points).

Conclusion:

As seen in Figure 7. the model perform poorly on this dataset. The dataset has a lot of noise and has lot
of unnecessary readings far away from the cylinder. The model is trained with a lot of data far away from
the cylinder. Hence, probably the model is not able to capture the intrinsic details of the true flow close by
the cylinder. As also seen in 7.2.3, the model performance decreases for high reynolds number. Reynolds
number for this dataset is extremely high which might result in the poor performance of the model.

12



Figure 7: TBNN predictions on flow around a square cylinder. Left: Predictions, Right: True values.

8 Conclusion

The following overall conclusions can be drawn from the experiments performed in section 7.

• The performance of the model degrades with increase in reynolds number of the flow. That is, as the
reynolds number is directly proportional to the flow velocity, as the flow velocity increases the model
performance decreases.

• This is evident from the experiments performed in section 7. Section 7.1 shows channel-flow dataset
with very low reynolds numbers (below Re=600). The model performs accurately on this dataset.
Section 7.2 shows ductflow dataset with increasing reynolds numbers. The model performance decreases
gradually from Re=300 to Re=1200. Finally, section 7.3 contains flow around a cylinder with Re=22000
which is a very high reynolds number. The model performs poorly on this dataset.

• The predictions of the model are very fluctuating especially in sections 7.1 and 7.2. This is because
the model is designed to be trained on large datasets. However, in these experiments, the model is
trained on small or intermediate sized datasets. The model complexity is too high which results in the
fluctuations. One work around for this issue is to smoothen the curve using Gaussian kernel or any
other technique.

• Overall, the TBNN (deep learning) model performs significantly better than the linear or quadratic
models for RANS turbulence modelling.

• This method can be adopted in practice where quick (real-time) solutions are required but high accuracy
is not needed.
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9 Future Work

Implementing the Tensor Based Neural Network and analysing its results on various datasets has opened
door for a large number of future works.

• As seen in Figure 5., a large number of points violate the eigenvalue constraints given in equation (9).
However, how to limit the points so that they obey these constraints is still to be explored.

• The current results are very fluctuating. Error must be compared after smoothening the predicted
results. This post processing is very likely to improve the results.

• Some more datasets are publicly available on the internet. Experimenting on these datasets will give
more insights about the TBNN model. The datasets are as follows.

• Flow through a convergent-divergent nozzle [13]:

Flow Reynolds Number = 12600

Number of data points = 887040

The dataset contains DNS information of turbulent flow at Re=12600 through a convergent-divergent
nozzle. The flow is in X direction.

• Backward Facing Step Flow [14]:

Flow Reynolds Number = 395

Number of data points = 459648

Contains DNS information of Re=395 flow around a backward step.
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