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2 Fluid Particles Simulation

2.1 Brute Force Algorithm for all particle’s interaction

In this algorithm, every particle interacts with every other particle. While computing the neighbors all
particles are considered. The pseudo code for this algorithm is given below.

Pseudo Code

define structure Particle {
double x,y ; // particle position
double vx,vy ; // particle velocity

} p[MAX PARTICLES] ;
double radius = 0.001 // radius of interacting neighbors
double dt = 0.0001 // smallest time scale of the simulation
Function getneighborindex(integer i , double radius):

// This function takes in particle index and radius as input and returns indices of all neighbors
within the given radius.

integer number of neighbors = 0 // store number of neighbors
integer nbidx[1000] // stores indices of the neighbor particles
for k in 0 to MAX PARTICLES do

double dist = euclidean distance(i,k)
if dist = radius then

nbidx[number of neighbors] = k
number of neighbors++

end

return nbidx[], number of neighbors
Function Main():

set p.x and p.y randomly using builtin rand() function.
For half the particles, set p.vx and p.vy as zero and for rest half as unit vector in random
direction.

for t from 0 to MAX TIME do
for i from 0 to MAX PARTICLES do

integer nbidx[] = getneighboridx(i,radius) // gives an array of neighbor index and
number of neighbors found.

for k from 0 to number of neighbors do
particle pn = p[nbidx[k]] // define pn as neighbor particle
double denom = pow(euclidean distance(i,nbidx[k]),3) // computes euclidean
distance between p[i] and pn raised to power of 3

double Fx = (p[i].x - pn.x) / denom
double Fy = (p[i].y - pn.y) / denom // computes the force by neighbor pn on
particle pi

p[i].vx += Fx*dt
p[i].vy += Fy*dt // update velocity

end

end
for i from 0 to MAX PARTICLES do

p[i].x += p[i].vx*dt
p[i].y += p[i].vy*dt // update positions

end

end
return 0
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Estimated time requirement:

Number of Particles (p) = 108

Calculations to compute neighbors for each particle = p = 108

Overall calculations = p2 = 1016

CPU time to compute a floating point operation = 10 nSec = 10−8Sec.

Let number of floating point operations in a single timestamp = K

Therefore, time of computation of one time stamp in seconds (T0) is:

T0 = K ∗ 1016 ∗ 10−8 = K ∗ 108sec (1)

Number of timestamps = 104

Totaltimerequirement = K ∗ 1012sec ≈ 30, 000years (2)

2.2 4-nary Tree based Algorithm

This algorithm uses abstract data structure called trees, specifically 4-nary tree. The abstract algorithms
is explained in words below.

• The particle’s xposition and yposition are converted into a 10 bits binary number.

• Negetive positions are given by the 2’s complement.

• Starting from the first bit (MSB), each particle is placed into one of the four nodes of the tree by
checking MSB of xposition and yposition as 00,01,10 or 11.

• This process is continued for all bits and a tree with depth = 10 is created.

• each of the particle forms a leaf node for one of the 1024 * 1024 tree nodes.

• Geometrically, this can be viewed as the 2 ∗ 2 box divided into 210 ∗ 210 grid. The particles lying in
the same grid forms neighbors for other particles in the grid.

Pseudo Code:

The Main() program remains the same as above with calls to the utility functions createtreenode(),
updatetree() and getneighborindex(). The tree data structure and the utility functions are described in
the code below.

define structure leafnode {
integer particleidx ; // index of the particle in the array.

} leafnode;
define structure treenode {

integer numleaves; // number of leaves/children the node contains
struct treenode *child00 ;
struct treenode *child01 ;
struct treenode *child10 ;
struct treenode *child11 ; //the for possible children of the treenode which are non leaf nodes
struct leafnode *leaves[1000] // leafnodes containing the particle indices

} treenode;
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Function createtreenode():
// This function allocates the memory to the new node equivalent to the size of the treenode
struct and initializes the node.

struct treenode *new node
new node = Assign memory using malloc();
new node→ child00 = NULL
new node→ child01 = NULL
new node→ child10 = NULL
new node→ child11 = NULL
new node→ numleaves = 0

return new node pointer
Function gotochild(struct treenode *current node, integer bx ,integer by):

// This function checks the binary bit of x (bx) and y (by) and points current node pointer
towards the corresponding child. If child is not present, it creates a new child.

switch 2*bx+by do
case 0 do

if child00 not present then
call createtreenode()

current node = current node→ child00
end
case 1 do

if child01 not present then
call createtreenode()

current node = current node→ child01
end
case 2 do

if child10 not present then
call createtreenode()

current node = current node→ child10
end
case 3 do

if child11 not present then
call createtreenode()

current node = current node→ child11
end

end

return current node pointer
Function updatetree(struct treenode *root):

// This function builds the tree and add particles as its leaves.
int bx[BITS], by[BITS]; // stores the binary representation of particle k’s position.
for k from 0 to MAX PARTICLES do

bx = dec to bin(p[k].x)
by = dec to bin(p[k].y) //dec to bin converts signed fractional decimal into binary by
multiplying the number by 2 and taking out the MSB everytime. For negetive numbers it
computes the 2’s complement.

current node = root
for i form 0 to BITS do

current node = gotochild(current node, bx[i], by[i]) //gives pointer to appropriate child
end
addleaf(current node,k) // this function creates leafnode and updates its data, same as
createtreenode() function for leaf.

end

return root
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Function getneighborindex(integer k, struct treenode *root):
// This function takes in the root of the tree made by the updatetree() function and the current
particle index (k), searches the location of k in the tree and computes the number of leaves of
its parent which is same as its number of neighbors and returns the neighbor indices and the
number of neighbors.

int bx[BITS], by[BITS]; // stores the binary representation of particle k’s position.
bx = dec to bin(p[k].x)
by = dec to bin(p[k].y) .
current node = root
for i form 0 to BITS do

current node = gotochild(current node, bx[i], by[i]) //gives pointer to appropriate child
end
int nbidx[] // stores indices of neighbors number of children = current node→ numleaves
for k from 0 to number of children do

nbidx[count] = current node → leaves→ particleidx
count++

end

return nbidx[], number of neighbors

Time Complexity:

Let number of particles = p, number of boxes = b and the number of bits used be BITS.

Number of boxes b = 4BITS .

In the 4-nary tree for every particle,

• search operation = O(log b)

• insert operation = O(log b)

Hence, to update the tree with every particle,

update operation = O(p ∗ log b)

Number of neighbors = O(p/b),

Again, for every particle,

• To find the neighbours, search operation is required = O(log b)Tocomputeforcesfromtheneighbors = O(p/b)

Hence to update all particles forces = O(p ∗ (log b + p/b)) = O(p log b + p2/b)

TotalComplexity = O(
p2

b
+ cp log b) (3)

Let the number of float operation in each iteration be K.

For the given problem, p = 108, b = 106 = 210 ∗ 210

Hence, for a single time iteration,

the total time complexity = K ∗ O(1016/106 + 109) = K ∗ 1010

which is much lesser than the brute force method complexity = K ∗ 1016

Neglect of integer operations is warranted because integer operations are carried parallel to the floating point
operations which usually take more time than the integer operation.
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2.3 Code Implementation and Experiments

Parameters used while implementing are as follows.

•• Number of Particles = 106

• Number of BITS = 7. Therefore number of grids = 27 ∗ 27

• time interval = 10−4 secs.

• total number of times = 1000

• Force Multiplication Factor = 10−4

• number of bins = 100

• binsize = 0.1

Reasons for choosing the above values:

Assuming CPU speed to be 10nSec, the original configuration will take about K * 100 secs for a single
iteration, which is very large if K is large or number of time stamps is large. Hence, the problem is scaled
down to the above configurations.

Number of Particles: Using the default 108 particles lead to insufficient RAM issues. Also the time
complexity increases. Hence 106 is chosen as optimum.

Number of BITS: Since particles are 106, using 10 BITS will create 106 grid regions which means 1 point
will be in each region which makes the problem of interacting particles impractical. To keep about 100
neighbors, 104 ≈27 ∗ 27 regions are required. Hence BITS=7 is optimum.

Force Multiplication Factor: The force needs to be scaled down as the magnitude of force blows to large
values. The reason is as follows.

Fx =
x

{x2 + y2}3/2
≈ 1

x2
(4)

Average distance between particles is

x =
2

103
≈ 10−3 (5)

Therefore, force from each particle is
Fx ≈ 106 (6)

But if the particle comes closer, x can be even lesser causes.

In the experiments, it is observed the force to have larger values.

This results in large velocities and displacements which causes the particle to rebound many times from the
wall.

Solution to this? Either decrease the force by a constant factor or reduce the time interval sufficiently to
capture the intermediate interactions.

binsize: In experiments, it is observed that particle velocities are concentrated near zero but some particles
have very large velocities.

If

binsize =
max(velocities)−min(velocities)

100
(7)

is used, then no noticeable segregation of particles is observed. Hence the bins are formed near zero to
capture the fine variation of most particle velocities near the origin.
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2.4 Results

Variation of execution time with parameters

Final Implementation has the above chosen optimum parameters.

Its Time of Execution = 4.4 hours for 1000 iterations.

Note: Final code (mentioned above parameters) of 1000 iterations is run on a server with 220GB RAM,
i7 processor. Rest of the experiments are run on laptop (13 GB available RAM) for 100 iterations which
require lesser time and memory. OS: Linux 16.04 LTS, compilation command ”gcc AE16B005.c
-lm”.

Note2: The final algorithm is not memory optimised as a new tree is created for each iteration and all the
memory form the old tree is not freed. However, a laptop with 13GB available RAM should be able to run
90-100 iterations of the submitted code.

(a) Table 1. shows the variation of time of execution with number of iterations performed.

Number of
iterations

1 10 100 1000

Time of
execution (sec)

15.06 166.6 1508.9 15804.6

Table 1: Variation with iterations

Conclusion: Time of execution scales linearly with number of iterations. Hence other experiments can be
conducted for small number of iterations and can be scaled linearly for large iterations.

T ∝ #iterations (8)

(b) Execution time variation with number of particles is given below for 100 iterations. Keeping the regions
constant (7 bits).

Number of
Particles

10000 100000 1000000

Time of
execution (sec)

4.118 27.72 1508.9

Table 2: Variation with number of particles

Conclusion According to equation (3), if b is constant, then

T ∝ p2 + c ∗ p (9)

Therefore,

T2

T1
=

100 ∗ p2 + 10 ∗ cp
p2 + cp

=
100p + 10c

p + c

(10)

But this trend is not followed in Table 2. The constant factor or number of floating point operations and
memory allocation operation might have caused the deviation in the trend.
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(c)Execution time variation with number of BITS (or regions) is given below for 100 iterations. Keeping
the particles constant.

Number of BITS
(# regions)

7 (≈ 10000) 10 (≈ 1000000)

Time of
execution (sec)

1508.9 723.95

Table 3: Variation with number of particles

Conclusion: From equation (3), if p is constant,

T1 ∝
1

b
+ c ∗ log 4b (11)

T2 =
1

100b
+ c log 4100b =

1

100b
+ c ∗ log 4b + 3.3c (12)

Hence the ratio varies with the constant c and the magnitude of b and cannot be determined easily.

(d) Execution time variation with number of particles and regions keeping the number of neighbors (i.e. p
b )

fixed is given below for 100 iterations.

Number of
particles

10000 1000000

Number of
regions

100 10000

Time of
execution (sec)

23.59 1508.9

Table 4: Variation with particles keeping neighbors fixed

Conclusion From equation (3), if neighbors are fixed, then p bisfixed.

Then,

T ∝ p ∗ p
b

+ cplog(b) ∝ p(1 + c log b) (13)

This trend is observed as scaling p to 100*p causes the time to scale by 60 times.

(e) Comparison of 4-nary Tree algorithm with brute force algorithm.

Approach Brute Force 4-nary Tree
Number of
particles

1000
(1000iter)

10000 100000 1000
(1000iter)

10000
(100neighbors)

100000
(1000neighbors)

Execution
Time(sec)

33.84 254.5 2323.4 9.013 23.59 344

Table 5: Comparison with Brute Force Method

Conclusion: Brute force time complexity depends on

Tbrute = O(p2) (14)
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Where as 4-nary tree complexity is

T4nary = O(
p2

b
+ cplog(b)) (15)

Assuming first term to be much greater than second term, the ratio

Tbrute

T4nary
∝ b (16)

The experiments follow this trend as in the experiments, b ≈ 64andthealgorithmscalesbythatfactor.

Clearly, the 4nary Tree Algorithm is much faster than the brute force algorithm for particle
sizes 103 and above as tested.

2.5 Velocity Distribution

Partial Quicksort is required. Quicksort sorts the array in place. For each step, it chooses a pivot and
sorts the array such that all elements to the left of partition are less than pivot and all elements to the right
are greater than pivot.

Here, 100 bins are required with equal pivot intervals. Quicksort is called 99 times with the pivot increasing
by constant in each call. Only 99 iterations of quicksort are required instead of a full quicksort.

L2 cache size of CPU = 512kB.

Plotting the velocity distribution.

number of bins = 100

bin width = 0.1

Note: Bin separation given in the question paper is equidistant from minimum velocity to maximum velocity.
However almost 98% of the particles have velocities in the first bin. Hence, to get better insight bin width
is reduced to 0.1 m/s and the histogram spans upto v = 10 m/s. This captures 95% of the data.

Final distribution is plotted as follows.

Figure 1
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The progression of the particle velocities with respect to time can be seen below in Figure 2.

Figure 2

A spline curve is fitted to the velocity distribution passing through the average velocities of the bins. This
can be seen in Figure 3.

Figure 3

Page 10



EE4371 EndTerm Report Rahul Chakwate

Conclusion:

• Initially, half the particles have zero velocities and other half have unit velocities.

• As the time progresses, the moving particles interact with stationary particles and exchange their
momentum resulting in intermediate velocity values.

• Forces on some particles aggregate to large values causing large accelerations of the particles thus
increasing their velocities.

• Finally, at thermal equilibrium, the particle velocities attend Maxwell Boltzmann distribution.

The fitting of the Maxwell Boltzmann distribution is given in Figure 4. As observed, the curve almost
matches the distribution. If the simulation is run for long enough time, both the curves will exactly match.

Figure 4
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1 Modified Knapsack Problem

1.1 Problem Formulation

The ordinary Knapsack Problem is formulated as

Maximize
n∑

i=1

vixi (1)

subject to
n∑

i=1

wixi ≤W (2)

where xi ∈ {0, 1} is a binary indicating if weight wi is present in the summation or not.

This problem can be solved by greedy as well as dynamic programming based algorithm with recursion.

However, the given problem is a modification of the general knapsack problem where

vi = log100 wi (3)

Hence the objective now becomes

Maximize

n∑
i=1

xi ∗ log100 wi (4)

and the constraints have an additional multiplying term

n∑
i=1

wixi ≤ 10000 ∗
n∑

i=1

xi (5)

1.2 Pseudo Code

The abstract algorithm is listed below.

• Solving the ordinary Knapsack Problem using dynamic programming, the m(n,W) matrix stores the
best solution so far with first n weights and weights summation constraint to W.

• the (i, j)th entry in the matrix come from one of the following.

m(0, w) = m(i, 0) = 0 (6)

ifwi > w,m(i, w) = m(i− 1, w) (7)

ifwi ≤ w,m(i, w) = max(m(i− 1, w),m(i− 1, w − wi) + wi (8)

If there is an improvement, it is buit on the current optimal solution.

• This value increases monotonically from left to right i.e from lower W to higher W.

• Also, the last row uses the optimal weights out of all the available weights to reach the solution.

• Hence, if we start from the last row, last column of m(n,W
√
n), we have the maximum possible value

with optimal combination of weights.
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• This can be checked against w
√
k constraint.

• If satisfied, this is our optimal solution.

• If violated, then check for previous entry m(n,W
√
n− 1).

Pseudo Code

integer w[] //stores the weights
integer v[] //stores the values
double value[i][j] //stores the optimal solution upto (i,j) for dynamic programming
integer numweight[i][j] //stores the number of weights used to check for the modified constraint
Function Knapsack():

This function calls m(n,W), back tracks the weights and checks for W
√
k condition.

value[0,j]=-1 //initialization
numweight[i][j]=0
for Wk from W → 0 do

res = m(n,Wk)
for i from n→ 0 and res ¿ 0 do

if w[i] > j then
continue

//ignore that weight
if value[i− 1][j] > value[i− 1][j − w[i]] + v[i] then

continue
//entry came from the same weights, no new weight added
else if value[i− 1][j] < value[i− 1][j − w[i]] + v[i] then

res = res− v[i]
j = j − w[i]
print(w[i]) //if the entry came from this option, the a new weight w[i] is added.
else

if numweight[i− 1][j] > numweight[i− 1][j − w[i]] then
continue

//If values are same from both paths, choose path with more constraints so that the
constraint is satisfied.

else
res− = v[i]
j− = w[i]
print(w[i]) //if more weights are from above cell, then no weights are added. If
not, then weight is added and print it,

end

if sum of weights ≤W0 *
√
numweight[n][Wk] then

Optimal solution found at Wk
//in the end, check for the modified constraint, if satisfied then this is the optimal solution
else continue by reducing Wk.

end
return
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Function m(integer i , integer j):
This function recursive computes the optimal Knapsack solution upto (i, j)th cell. It computes
only required entries and not all the entries.

if i == 0orj ≤ 0 then
return 0

//the actual matrix starts from i=1,j=1
if value[i-1][j] is unassigned then

call m(i-1,j)
//to compute i-1,j value
if w[i] > j then

value[i][j] = value[i-1][j]
if value[i-1][j-w[i]] is unassigned then

call m(i-1,j-w[i])
//to compute i-1,j-w[i] node
else

if value[i− 1][j]! = value[i− 1][j − w[i]] + v[i] then
value[i][j] = max(value[i-1][j], value[i-1][j-w[i]]=v[i]) numweight[i][j] = corresponding
numweight entry.

else
if numweight[i− 1][j] > numweight[i− 1][j − w[i]] + 1 then

value[i][j] = value[i-1][j]
numweight[i][j] = numweight[i-1][j]

else
numweight[i][j] = numweight[i− 1][j − w[i]] + 1

end

end

end

return value[i][j]

1.3 Code Implementation and Results

Input data: contains 907 weights with values ranging from 1 to 9999.

Array width = W0 ∗
√
n = 10000 ∗

√
907 = 301165 ≈ 310000

Note: Dynamic memory allocation is required for array of this big size. Hence array of pointers is used
with malloc().

Time of Execution: 16.7 sec.

Optimum solution found at W = 171466

Maximum objective function value satisfying all constraints = 369.126

Number of weights used in optimum solution = 294

Sum of the weights used = 171464

Clearly

10000 ∗
√

294 = 171464.28 (9)

Hence,

n∑
i=1

wixi = 171464 < 171464.28 = 10000 ∗
n∑

i=1

xi (10)

To arrive at the optimum, 10000
√

970 − 171466 = 129698 conditions had to be checked for constraint
violation.
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Time Complexity of Modified Knapsack Problem:

Since full W
√
nbyn matrix needs to be computed in the worst case, the worst case time complexity =

O(W ∗ n3/2).

As compared to ordinary Knapsack complexity of O(Wn), this algorithm is
√
n times slower.

But we do not compute full table in average case and hence this is a faster approach than iterating over the
entire table.
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