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Problem Statements Identified

What are the important features in predicting (i) casualty and (ii) severity

using Lasso, Random Forest, etc.?

Group different locations (districts) into various categories based on

safety level (Safe, Moderate, Risky, etc.) using clustering techniques.

Predict the safest age group and gender for the driver for different given
vehicle types.



Q1. Predicting Importance of Features

Data Preprocessing:

Finding Missing data and removing or imputing it

e Finding a new feature called number of days since accident occured
e  Extracting the hour when the accident occured

e Finding features like daytime groups in which accidents occured

e Identifying Outliers and removing them for numerical data

e Converting Categorical data to category type

® Dropping off unnecessary columns: Driver_IMD_Decile
Accident_Index,Location_Easting OSGR","Location_Northing OSGR" etc



Feature Enineerin
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Visualization of Certain Features

Average Accidents per Weekday
Average Number of Casualties by Road Type
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\ Box Plot Depicting Outliers
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Q1. Building the Model for Feature Importance

e  We used the Random Forest and LGBM to predict Accident Severity and used SMOTE to

prevent the class imbalance in the data.This ended up increasing our accuracies.

e  We also ran group Lasso regression on predicting number casualties but it did not achieve good

results.

e Random Forest does not deal with categorical features. One has to One-Hot-Encoding to feed

categorical variables into RFs. How do we explain feature importance?

e However, LGBM has inbuilt functionality to handles categorical variables. So it includes

categorical variables into feature importances plot.



Feature Importance for predicting Severity with RF
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Feature Importance for predicting Severity with LGBM
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Feature Importance for predicting Casualties with RF
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Q2. Clustering districts by the Safety Level

o Wedefined 2 features to be clustered:

® log(No of accidents) *Mean Number of Casualties

per accident for every district
® Mean Accident Severity of every district

®  We then tried to find the optimal clusters using the

elbow method ie 3 here.

® Wk then clustered into 3 levels to find 3 different

safety levels of ie Safe Moderate and Risky whose
graph has been shown on the next page



Visualization of Clusters
depicting safety levels of the
Districts

®  This gave us Safety levels of 1,0.6 and 1.2.

® Three clusters indicate that that there are 2 clusters
of Low Severity but high having high and low
number of accidents and average casualties and only
one cluster where you have high severity and
intermediate casualties and accidents.




Safety Defintion

To define Safety we ran PCA on the 3 features to get a weighted equation that

will give us maximum separation among the cluster centers.

®  This is the equation we got:

Safety Level= 0.550 x (Number of Accidents per district) - 0.5968 x (Number of
casualties per accident per district) - 0.5837 x (Accident Severity per accident per
district)

e  This assigned pur clusters safety levels of -1.112, 1.082 and 0.993

This proved to be counterintuitive so we decided to get a safety level given by

the sum of the accident severity and our composite variable defined earlier



Choropleth Map:

Safety Level of Local Authority Districts in UK

®  The Adjacent Map shows the Local
Authority Districts in UK and the Safety

Level associated with each district.

e  Shapefile Source:

https://geoportal.statistics.gov.uk

®  Used Geopandas library to map the
generated safety variable to the map data.

e While almost all the districts had the same
names in both the files, some districts

names had to be renamed in the original

data file.



https://geoportal.statistics.gov.uk

Q3. Predicting the safest age group and gender for

models

We used the previous safety definition to get a prediction of safe values for different models

e  We also tried to find the absolute safety of each model over the entire dataset

®  These were found to be the least safe
o RENAULT,
o VAUXELL

o PEUGEOT

® These were one of the safest cars

VENTURI

)

) NORTON
) SANTANA
)

ENFIELD



Age Band of Driver Sex of Driver
16 - 20 Female
Male
21 25 Female
Male
26 35 Female
Male
36 45 Female
Male
46 55 Female
Male
56 65 Male
66 75 Female
Male
ACCESS 21 25 Male
36 45 Male
ACURA 26 35 Male
ADLY 16 20 Male
26 35 Male
36 45 Male
AJS 16 20 Female
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ZENNCO 16 20 Male
ZHONGYU 16 20 Male
ZNEN 16 20 Female
Male
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36 45 Female
Male
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