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1 Introduction

Yelp dataset consists of business, check-ins and review datasets. In this project, we are going to explore on
the review dataset. Given the review dataset, we can perform different tasks like sentiment analysis (which is
our task), word embedding training particular to reviews, analysing the user behaviour for better marketing
strategies and several other applications specific to your objective.

Here in this project we are predicting the user rating from 1 to 5 based on the given text features, date-
timestamp, and other numerical features. Basically this can be treated as Multi-class classification or a
Regression task. We applied several machine learning models like Naive bayes, Logistic regression with
polynomial degree, Random forest on the dataset. Finalised the näıve bayes model based on cross-validation
score. Interestingly, we can apply a regression model on this dataset. This is because the fact that classes
are ordinal i.e they have specific order among the ratings which are 5 > 4 > 3 > 2 > 1 unlike simple nominal
classification.

But cons of this approach is we need to do extensive validation on deciding the threshold as dataset is
imbalanced (We could not finish this approach because of credit issues at the end, but our classification
model performed decent enough)

2 Exploratory Data Analysis

Note: We visualised only 50% of the data. All observations are based on this sample dataset Each review is
accompanied by a rating from 1 to 5 stars. I will remove all columns from the dataset apart from the review
text itself, the date, funny and the star rating which will be used to predict the positive/negative sentiment.
Let’s now visually inspect some of the data.

2.1 Top 20 rows:

Let’s look at the top 20 rows of the dataset, and schema of the dataset to know what kind of features are
available:

Figure 1
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2.2 Schema of the dataset:

Figure 2

As you can see the schema, we have stars as our label and remaining as our features but are in string
format. So we need to encode the text features into the numerical values using Natural Language Processing
Techniques.

Note:

1. Features like cool and funny have negatives which are not accepted in the Näıve Bayes (Our Final
Model). So we won’t be using those negative features for the prediction task.

2. Time-stamp – Feature extraction techniques like day, month, year, isWeekend, Week number, Quarter
number and so-on can be done through datetime feature

3. Given business id has unique values for each record, seems they are already hashed like user id

4. User id is not unique for every record, so there is repetitions in the user id and we will explore it in
the next section
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2.3 Top 10 users:

Figure 3

As you can see above, A user is preferred based on the review count. Besides we can see those 10 users
statistics like minimum and maximum date of the review, and sum of their useful, funny, cool, average stars.

2.4 Average number of reviews per user and Cumulative Distribution of User
reviews:

Figure 4

≈ 80% of the user gives 5 reviews, Maximum number of reviews is close to 30.
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2.5 Imbalance in the Ratings:

We notice that 5-star reviews are the most popular (Majority class), and also that 1-star reviews are more
common than 2- or 3-star reviews. We can assume that customers will go through the trouble of leaving a
review only if they were highly impressed or highly disappointed. So order from the following histogram is,
# 5 stars > # 4 stars > # 1 stars > # 3 stars > # 2 stars

Figure 5

2.6 Mix of Languages English + Other Languages:

We used Fasttext (Open source library by Facebook) as a language detection model. The model identified
around 80% to be english, and other languages like french, spanish are also found in the dataset Look at the
following histogram. As you can see, English is the majority language.
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Figure 6

3 Data Pre-processing:

3.1 Tokenisation:

Tokenization is the process of converting text into tokens before transforming it into vectors. It is also easier
to filter out unnecessary tokens. For example, a document into paragraphs or sentences into words. In this
case we are tokenizing the reviews into words.

3.2 Stopwords Removal:

Stop words are the most commonly occuring words which are not relevant in the context of the data and do
not contribute any deeper meaning to the phrase. In this case it contains no sentiment.

3.3 Normalisation:

Includes casing, Stemming/Lemmatisation Lower case all the characters for uniformity in the dataset. This
is important when using a bag of words models. This process finds the base or dictionary form of the word
known as the lemma. This is done through the use of vocabulary (dictionary importance of words) and
morphological analysis (word structure and grammar relations). This normalization is similar to stemming
but takes into account the context of the word.

Note: Unfortunately, we could not find the lemmatization in the pyspark documents. So we skipped rhis
part. But this had an impact on the final results of accuracy from the accuracy we got from the colab
notebook.
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4 Feature Engineering Techniques:

4.1 Count Vectorizer:

Here our aim is to help convert a collection of text reviews to vectors of token counts. When an a-priori
dictionary is not available, CountVectorizer can be used as an Estimator to extract the vocabulary, and
generates a CountVectorizerModel. The model produces sparse representations for the reviews over the
vocabulary, which can then be passed to other algorithms. But cons of this technique is that order of the
words is not taken into consideration, only the frequency of the words information has been stored. And
also this gives high priority for highly frequent words, sometimes highly frequent words across all the reviews
does not help in the sentiment analysis. So we apply tfidf feature extraction technique to avoid this issue
and n-gram model is used to solve the order of words issue

4.2 TF-IDF features:

Term Frequency Inverse Document Frequency is a feature vectorization method widely used in text mining
to reflect the importance of a term to a document in the corpus aka reviews in our dataset. This method is
used to encode the text features into numerical features. This technique is used to reduce the importance
for the stopwords and increase relative importance to the unique words which helps in differentiating the
reviews in the sentiment analysis.

4.3 N-Grams:

An n-gram is a sequence of n tokens (typically words) for some integer n. This is also like tokenisation but
we split the sentence after every n words. This helps in preserving the order of the words in sentence to
some extent.

4.4 # Characters and # Words in the Sentence:

This feature helped us in improving the cross-validation accuracy by 1%. We wrote a UDF function for this
feature engineering technique. Refer to the code attached with this report for more details

5 Modelling Techniques:

We attempted different machine learning classification models to decide the best model suitable for this task.
Specifically, we tried Naive Bayes, Logistic Regression and Random Forest Classifier models. We also tried
Gradient Boosting Machines and Linear Support Vector Classifier with OneVsRest classifier but both the
models took long to converge. Hence, we could not report their performance.

5.1 Naive Bayes:

Parameters:

• smoothing=1.0,

• modelType=’multinomial’

For the Naive Bayes Classifier, we tried different variations of vectorizer and normalization in order to further
improve the performance.
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Figure 7: Naive Bayes without l2-Normalization

Figure 8: Naive Bayes with Hashing TF
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Figure 9: Naive Bayes with Count Vectorizer

Observations:

• We first implemented Naive Bayes Model with Count Vectorizer and Idf. With this we achieved 58.7%
accuracy.

• However, we figured out a discrepancy between TfIdf Vectorizer of pyspark and sklearn. Sklearn’s code
uses l2-norm of Idf vectors which provides better features to the classifier. Hence, we implemented
custom TfIdf with l2-norm which boosted the accuracy to around 63.1%.

• Further using count vectorizer instead of hashing TF gives a slight performance boost. However,
hashing TF is faster.

5.2 Logistic Regression:

Following settings were used for Logistic Regression Model

Parameters:

• maxIter=10,

• regParam=0.3,

• elasticNetParam=0.8,

• family=”multinomial”
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Figure 10: Logistic Regression baseline model

Figure 11: Best Model (67.2% Accuracy) - Logistic Regression with HashingTF and l2-Normalization
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Train and Test Accuracy: The best accuracy given by the logistic regression built on the custom tfidf
pyspark function and labels are modified from 0 to 4 instead of 1 to 5. Gave around 67.2%

Observation:

• Logistic Regression performed the best as compared to the other two models.

• We used the same custom tfidf with l2-norm as was used in Naive Bayes Classifier.

• Hashing TF along with Stop Words were used for encoding the words.

5.3 Random Forest:

Parameters:

• numTrees=8,

• maxDepth=5,

• maxBins=32

Figure 12: Random Forest Model
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Train and Test Accuracy: close to 45% on both train and test.

Observation:

• We tried RF with numTrees=64, but it took long to converge and hence we could not achieve the end
result.

• So finally we reported accuracy obtained by the 8 trees model.

6 Real-time Computation

We use Kafka to build real-time data pipeline and integrate it with Pub/Sub to exchange messages between
Kafka and Pub/Sub.

6.1 Streaming:

We launch and configure the Kafka VM Instance, create Pub/Sub Topic and Subscription. We use Cloud
Shell to publish the test data in finite intervals as in Figure 13. This test data is then feed into the dataproc
cluster which uses the pre-trained model to make the predictions Figure 14. We have also included a video
along with the code Drive Link.

Figure 13: Code to Publish Test Data from Cloud Shell
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Figure 14: Prediction on test data points

6.2 Latency Calculation:

Latency means delay. For the project purposes, we define latency as the time taken for a message to be
processed by the Kafka. This may involve bottlenecks such as:

• Bandwidth Limitation to transfer messages from Pub/Sub.

• Prediction Time.

• Waiting Time for data points to be mapped to a worker.

• Batch Duration for the streaming context.

We change the publish time interval from 10 to 0.5. This helps to decrease the delay caused automatically
due to delay in sending messages. We cannot set it very low because in that case, Kafka will receive all the
data points at once and will batch compute we don’t want that to happen. We also set the Batch Duration
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(a) Part - 1

(b) Part - 2

Figure 16: Latency with records

as 0.1. This is again to ensure that Kafka doesn’t Batch Compute. We set a window of 10 seconds and count
the number of data points processed during this window. We found that latency is around 1.743 as shown
in Figure 16 and Figure 15. This may seem higher than expected but we think this because of the large size
of the data points (long text).

Figure 15: Calculated Latency
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