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1 Overview of Internship

”Watershed” is a technique from mathematical morphology used mainly for image segmentation applied on an
undiracted graph. During my internship at ESIEE Paris, an attempt was made to integrate this widely applica-
ble technique with the latest machine learning techniques to obtain state-of-the-art results.

2 Literature Survey

• ”Watersheds for Semi-supervised Classification[2]”: The main concept of this paper is the ”MorphMedian”
operator. The paper describes the Minimum Spanning Forest (MSF) Watershed with arbitrary seeds. The input
is a weighted graph with some labelled seeds and outputs a partition of V into appropriate segments. The notion
of Maximum Margin Partition used in SVMs is used in this paper to define the MorphMedian partition. The
MSF-Watershed returns a MorphMedian partition and hence a Maximum Margin Partition. DIfference with
1 NN method is that 1NN considers a distance, while MORPHMEDIAN generalizes this to any dissimilarity
measure.

• ”Tour on Watersheds[4]”: Learned the fundamentals of graph, MST, erosion and dilution, Watershed cuts based
on drop of water principle and rising water principle. Dilation and erosion operations are carried out on graph.
Learned about half opening and half closing. The step by step process to find the watershed cut is explained in
this paper. Applications such as surface segmentation are illustrated. MSF hierarchical watersheds are discussed.

• ”A graph-based mathematical morphology reader[3]”: This is a survey paper on morphological operations.
Graphs, adjunctions, basic morphological operations, connected filters, watersheds and hierarchies are discussed
in details in this paper. Applications beyond the graph like the point clouds are also discussed in this paper.

• ”Convolutional Oriented Boundaries[5]”: End to end learning of CNN for object boundary or contour detection
and boundary orientation and heirarchical segmentation. First, contour detection at different scales. Feature
maps are extracted from every last layer of same scale. These maps are aggregated using trainable weights. They
are compared with the ground truth using the given loss function. For orientation, a sub network is attached to
every layer output and it is divided into K classes. Boundaries are stored using sparse representation.

• ”Metric Learning with Adaptive Density Discrimination[1]”: Discussed in the next section.

3 Magnet Loss discussion

”METRIC LEARNING WITH ADAPTIVE DENSITY DISCRIMINATION[1]” introduces a new loss function called
the ”magnet loss” which claim to achieve state-of-the-art classification results on visual recognition datasets outper-
forming the triplet loss with a 30-40% margin. It also shows good performance on hierarchical recovery properties.
Motivation behind the paper is to capture the intraclass variation and interclass similarities in the data. Distance Met-
ric Learning (DML) approaches transform data to a representation space according to a similarity measure. However
earlier DML methods are incompetent with the modern classification algorithms. The magnet loss method described
in the paper claim to outperform these modern algorithms. Some of the benifits of DML are zero-shot learning,
visualizing high dimensional data, learning invariant maps, scaling of instances to millions of classes.

Magnet loss is a DML approach which overcomes the issue of predefined target neighbourhood structure and the
issue of target formulation.

Triplet loss, which is a special case of magnet loss, is formulated as follows:

where {.}+ is the hinge function and rm, rm+ and rm− are the representation of seed example, positive example
and negative example respectively.

Magnet loss adapts clustering techniques to capture the distributions in the representation space. For each class
index of clusters is maintained which is updated continuously throughout training. Objective function jointly manip-
ulates the entire cluster as opposed to individual examples. Clusters attract and repel each other and hence the name
”Magnet Loss”.

The k clusters are obtained via K-means algorithm. The loss function is formulated as below:
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Further the loss function is modelled as follows:

where C(r) is the class of the representation r, µ(r) are its cluster centers, {.}+is hinge function, α is a scalar and
σ2 is the variance of all examples away from their respective cluster centers.

While evaluating, k nearest cluster is used which is a variant of soft KNN.

4 Limitations of magnet loss

In the future work of the DML paper, it is discussed that varying K adaptively while training rather than keeping it
fixed can improve its performance.The author asks to try out a more sophisticated approach than K-means like the
tree based method.

In reality, almost no dataset will have fixed number of sub clusters within a class. In any dataset, there can be a
mismatch in the number of clusters within each class. Some classes are broad while some are small. In such cases,
fixing the same k performs poorly as illustrated in the experiments below.

Watersheds have the ability to adaptively select the number of clusters by keeping some other criterion like the area
fixed. Hence, we aim at using complete watershed to select the number of clusters on the go of the training process.

5 Theory of Improvement using Complete Watershed

Watershed are known to represent the purest sub-clusters. First use the Minimum Spanning Tree on the representation.
Then apply watershed hierarchy by area filtering. This operation carries hierarchical clustering of the MST and removes
the small nodes by area thresholding.

Since the criterion is the area thresholding, the number of clusters within a class is determined my the number
of clusters above the threshold area. ”K” is no longer fixed as in the case of original magnet loss. This gives better
results especially when the number of sub clusters in each class are unbalanced.

6 Experiments on SSL dataset

Major python libraries used are:

• tensorflow

• sklearn (for TSNE)

• mlpack

• higra

6.1 Comparison of Magnet loss with and without iterative Watershed for 6 distinct
classes

The SSL6 dataset contains data points belonging to 6 different classes. Experiment was to implement the magnet
loss function on the SSL6 dataset so that it creates a baseline for our work. Further we compared the baseline with
the inclusion of the watershed layer. Equation 5 of the magnet loss paper was implemented in a mini batch setting.
Parameters chosen are:

m=6
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d=8
k=1
embedding dimensions = 2 to avoid any changes in the representation due to TSNE.
optimizer = Adam with lr=1e-4
The results are shown in the table below.

Table 1: Results

SSL 6 class classification
W/o WS With WS
Train Val Train Val
99.66 96.33 97.66 97
99.75 96 99.83 97.33
99.58 98.33 96.83 95
99.83 96.66 98 96
100 96 98.16 98
99.91 97.66 99.41 98
99.78833333 96.83 98.315 96.88833333 Average
0.156641842 0.9587074632 1.118190503 1.186093026 Stdev

Observations:
The iterated watershed separates cluster within a cluster. The number of clusters has to be chosen before hand

similar to the original magnet loss algorithm with K means++ clustering.
On SSL 6 class classification problem, iterated watershed performs equally well on the validation set but with less

overfitting on the training set. This implies that iterated watershed models the classification problem better than the
Kmeans++ clustering method. However, the standard deviation is high on both train and test set suggesting that it
is difficult to train a smooth model with watersheds.

6.2 Comparison of Magnet loss with and without iterative Watershed for 6 classes
collapsed into 2 classes.

The 6 classes are grouped into 2 classes. That is, 3 classes in 1 class each. The parameters of the experiment are same
as above. The results are given in the table below.

Table 2: Results

SSL 6 into 2 class classification
W/o WS With WS
Train Val Train Val
99.83 96.33 99 97.66
99.25 96 99.75 99.33
99.5 95 98.66 97.33
100 98.33 99.66 98.66
99.58 96 99.83 97.33
99.58 95 100 99.33
99.62333333 96.11 99.48333333 98.27333333 Average
0.2618905624 1.22190016 0.5293266162 0.9527364099 Stdev

Observations:
The validation accuracy seems to improve by the use of iterated watershed. Clusters formed using watershed are

comparatively more pure than the original magnet loss algorithm. However, more evidence is required to support this
argument.

6.3 With and without L2 normalization

The features from the last layer of the network are tested with and without normalization before feeding them to the
watershed layer.

Comparison results are shown below.

Page 4



Rahul Chakwate, IIT Madras, India Internship Report

Table 3: Results

SSL 6 into 2 class classification
Without L2 norm With L2 norm
Train Val Train Val
99.91 98.33 99 97.66
99.75 99.33 99.75 99.33
99.58 97 98.66 97.33
99.08 97 99.66 98.66
99 98 99.83 97.33
99.91 98.66 100 99.33
99.52875 97.91375 99.48333333 98.27333333 Average

Observations:
With L2 normalization of the final layer of the network, the validation accuracy increases by a small margin and

the overfitting decreases.

6.4 Magnet loss with variable cluster complete watershed for 6 distinct classes

The number of clusters in a class is fixed in the original magnet loss algorithm as well as in the iterated watershed
algorithm. But here, in the complete watershed implementation the number of clusters is set adaptively while training.

Table 4: Results

SSL 6 classes split Variable WS
Train Val
99.33 92
99.83 92.33
99.41 92
99.66 92.67
99.41 92.67
99.66 91.33
99.5 92
98.66 91.67
99.08 91.67
98.83 91.67
99.337 92.001 Average
0.3757082201 0.4450081148 Stdev
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Figure 1: Error with iterations

Figure 2

Observations:
The table shows that the average validation accuracy is around 92% even though the train accuracy reaches 99%.

There is a large amount of overfitting taking place.
Figure 1. shows the error versus number of iterations. It becomes smooth and flat as number of iterations increases

(after about 10,000 iterations).
Figure 2. shows the representation of the neural network at the end of the training process. The sub clusters

appear to be pure and well separated from other class clusters. They are far apart from clusters of the same class
depicting intra class variation and inter class similarity.

6.5 Magnet loss with variable cluster watershed for 6 classes collapsed into 2 classes

Table 5: Results

SSL 4-2 split Variable WS
Train Val
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SSL 4-2 split Variable WS
99.416 94
99.833 94.66
99 92.33
100 94.66
99.75 93.33
99.75 94.66
100 93
99.66 94.33
98.33 93.66
99.41 93.33
99.51 93.796 Average
0.515679153 0.8029002982 Stdev

Figure 3: (a) Error v/s iterations. (b) Number of clusters with iterations.
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Figure 4

Figure 5
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Observations:
From Table 5, we see that the average train accuracy is 99.5% while average validation accuracy is 93.7% which

suggest subsequent amount of overfitting taking place. The standard deviation is less than one which is negligible.
figure 3(a) shows the train error versus the number of iterations graph which smoothens down after few iterations.
Since the number of sub clusters ’k’ is learned adaptively, Figure 3(b) depicts the number of sub clusters within

each class as a function of iterations. The sub clusters fluctuate a lot but within a certain range. The mean number
of sub clusters is about 20 and 10 sub clusters in the yellow and blue classes respectively. This is also in agreement
with the initially chosen split of 4:2 clusters in the two classes respectively. This means that the network is correctly
able to learn the proportion in which the data is distributed without manually specifying the number of sub clusters
’k’ to the network.

Figure 4. and 5. shows the initial representation and the final representation of the network respectively. 4(a)
and 5(a) are color coded to representation the 2 major classes which are to be classified where as 4(b) and 5(b) codes
the original 6 classes which are to be retrieved. As one can infer from Figure 5(b), Many of the sub clusters are
well segregated, that is many of them are pure. Where as some of them are intermixed with one another. There are
multiple sub clusters with the same color spread across the graph. This suggests the intra-class variation. Also some
clusters belonging to different classes are close to one another which suggests inter-class similarity.

6.6 Experiments with slow MST update

Table 6: Results

SSL 6 classes split Variable WS slow MST update
Train Val
99.75 91.66
99.5 92.33
99.41 92.66
98.91 92.66
99.08 93
99 94.33
98.91 94.33
98 93.66
99.16 92.66
98.66 93
99.038 93.029 Average
0.486479416 0.8535084456 Stdev

7 Experiments with Synthetic Dataset

The synthetic dataset comprises of 6 Gaussian blobs in 8 dimensions with 4 blobs belonging to one class and 2 blobs
belonging to the second class. This is a simple dataset to verify if the algorithm works correctly and is able to generate
pure clusters. The TSNE representation of the dataset is given in Figure 6.
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Figure 6: TSNE of Synthetic dataset.

7.1 Variable cluster watershed for 6 distinct classes

The same algorithm of magnet loss with variable cluster watershed is implemented on the synthetic dataset with 6
distinct classes.

Figure 7: Error /vs iterations
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Figure 8

Figure 9

Observations:
Since the dataset is simple, the train and validation accuracy reaches 100% after a certain number of epochs and

the train and validation error also goes to zero. The train error versus iterations is shown in Figure 7.
Figure 8. shows the initial representation generated by the network where as Figure 9. shows the final representation

color coded with 6 original classes. As one can see, the 6 classes are well separated by the algorithm.

7.2 Variable cluster watershed for 6 classes collapsed into 2 classes

The algorithm is implemented on synthetic dataset with 2 classes, one having 4 sub clusters and other having 2 sub
clusters respectively.
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Figure 10: (a) Error v/s iterations. (b) Number of clusters with iterations.
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Figure 11

Figure 12
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Observations: Since the synthetic dataset is simple, 100% train and validation accuracy is obtained.
Figure 10(a). shows error v/s iterations. The oscillations appear to dampen out after 6000 iterations. In Figure

10(b), the plots of number of sub clusters with iterations is shown for the two classes. The values fluctuate a lot but
within a certain limit. The average ratio of the blue to yellow sub clusters is around 2:1 which is same as the original
ratio of 4 clusters to 2 clusters in the classes respectively.

Figure 11(a) and (b) shows the initial representation of the network for 2 classes and original 6 classes respectively.
Figure 12(a) and (b) shows the final representation of the network for 2 classes and original 6 classes respectively.

As one can see in Figure 12(b), the sub clusters are pure and they appear to be well separated from the opposite class
clusters.

8 Conclusion

Integrating watershed with magnet loss has many advantages over the original magnet loss paper.

• The number of clusters which is assumed as a fixed parameter in the original paper is no longer a constraint in
our work.

• On the synthetic dataset, the clusters obtained are very pure in terms of classes while on the SSL dataset, the
clusters are considerably pure in some regions while mixed in rest of the regions.

• Some changes are required in the magnet loss with complete watershed code in order to make these clusters
pure. One of the changes can be adding a regularization term in order to add restriction on the closeness of
the clusters. Other suggested change is to include the clusters of the same class in the magnet loss equation
and to set a lesser margin to these clusters as compared to the clusters belonging to different classes. Further
experiments need to be conducted on this idea.

• Future Work: Further application of this method can be in the field of 3D point clouds. This area is untouched
in the literature of 3D point clouds classification and segmentation. Point clouds can be represented as a graph.
Since this is a generic algorithm on graphs, it should also work for point clouds segmentation tasks in the similar
way graph CNNs work on point clouds.
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