arXiv:2011.00923v1 [cs.CV] 2 Nov 2020

MARNet: Multi-Abstraction Refinement Network for 3D Point Cloud Analysis

Rahul Chakwate

Arulkumar Subramaniam

Anurag Mittal

Indian Institute of Technology Madras

ael6b005@smail.iitm.ac.in

Abstract

Representation learning from 3D point clouds is chal-
lenging due to their inherent nature of permutation invari-
ance and irregular distribution in space. Existing deep
learning methods follow a hierarchical feature extraction
paradigm in which high-level abstract features are derived
from low-level features. However, they fail to exploit dif-
ferent granularity of information due to the limited interac-
tion between these features. To this end, we propose Multi-
Abstraction Refinement Network (MARNet) that ensures an
effective exchange of information between multi-level fea-
tures to gain local and global contextual cues while effec-
tively preserving them till the final layer. We empirically
show the effectiveness of MARNet in terms of state-of-the-
art results on two challenging tasks: Shape classification
and Coarse-to-fine grained semantic segmentation. MAR-
Net significantly improves the classification performance by
2% over the baseline and outperforms the state-of-the-art
methods on semantic segmentation task.

1. Introduction

The recent evolution of 3D sensors such as LiDAR and
Kinect has boosted the ability to perceive the environ-
ment in terms of 3D point clouds. 3D Point cloud analy-
sis has increasingly become ubiquitous in robotic percep-
tion [36], augmented / mixed reality [16] and autonomous
driving [64, 9, 48]. Traditional analysis techniques with
hand-crafted features are unable to cater to the needs of
these modern applications that demand diverse semantic
understanding. With a proven track record in terms of
state-of-the-art solutions in multiple domains such as im-
age analysis [18, 46, 10, 14, 49] and natural language pro-
cessing [51, 1, 34], deep learning pledges a promising alter-
native to conventional methods. Owing to the remarkable
improvements of deep neural network architectures in 2D
image analysis, researchers attempt to port and adapt the 2D
network architectures to 3D point clouds [38, 40, 25, 27].

Code available at: https://github.com/ruc98/MARNet

PointNet

PointNet++

DensePoint

Figure 1: State-of-the-art models for feature extraction from
3D point clouds. (a) PointNet [38] uses a series of point-
wise MLPs followed by max/average pooling, (b) Point-
Net++ [40] introduces the notion of hierarchical feature ex-
traction to capture local patterns, (c) DensePoint [27] uses
densely connected blocks to aggregate contextual informa-
tion, (d) MARNet (ours) proposes a unified architecture to
perform hierarchical and multi-level feature aggregation to
capture local and global contextual cues.

A natural perspective is to convert irregular point clouds
to regular grid voxels [32, 57, 20, 4] and apply 3D CNNs
to extract features from them. However, voxelization may
obscure the finer details due to lower grid resolution. On
the other hand, the cost of making the voxel grids finer is
exponentially high. Another strategy is to project the 3D in-
formation on multi-view images [47, 63, 62, 39]. However,
it suffers from the loss of crucial 3D geometric information
and thus lack rich contextual features.

A pioneering approach called PointNet [38] proposes to
directly operate on irregular point clouds. It transforms the
3D points using a series of point-wise feature transforma-
tions and finally, outputs an aggregated feature vector using
a permutation invariant symmetric function. This successful
method, however, has a downside that local patterns are not
taken into account. To mitigate this issue, PointNet++ [40]

https://github.com/ruc98/MARNet

proposes to group the neighboring points in the euclidean
space and apply PointNet [38] locally on each of the group,
thus inducing the notion of hierarchical feature extraction.
This architectural design resembles the hierarchical feature
extraction of CNNs used for 2D image analysis [18].

In their solution to incorporate local patterns, Point-
Net++ [40] proposes two layers, namely: 1) Multi-Scale
Grouping (MSG) layer and 2) Multi-Resolution Grouping
(MRGQG) layer. The MSG layer aggregates point-wise fea-
tures at different scales (i.e., group the points with multiple
radii). Whereas, MRG layer aggregates the point features
at different resolutions (i.e., from multiple abstraction lay-
ers). Strong empirical performance of [40] suggests that
both these layers aid in capturing local patterns. However,
these layers fail to apprehend dense contextual insights, as
there is a lack of feature interaction between the global fea-
tures in deeper layers and local features in earlier layers. In-
spired by architectural improvement in the 2D image anal-
ysis domain [14], DensePoint [27] tries to diminish this is-
sue by using densely-connected blocks to encourage feature
reuse and enhance feature propagation in 3D point clouds.
On the downside, it fails to support multi-level feature inter-
action and lacks in its ability to preserve the features from
all stages, as the earlier features are modified during the
course of forward propagation.

As a result of the above observations, to achieve opti-
mal performance in the point cloud analysis tasks, we notice
that the following requirements are crucial in the network:
1) Multi-scale and multi-resolution aggregation of the fea-
tures to capture local as well as global patterns, 2) Efficient
feature communication between the shallow and deeper fea-
tures to gain dense-contextual information, 3) Preservation
of features at all levels of abstraction for effective feature
learning and back-propagation.

To this end, we propose a novel deep network archi-
tecture for 3D point clouds analysis: Multi-Abstraction
Refinement Network (MARNet), by carefully designing
the network layers to satisfy the above requirements. Pre-
cisely, MARNet (Fig. 1) consists of three stages in its net-
work design, namely: 1) Backbone stage, 2) Feature Cross-
Referencing (FCR) stage, and 3) Feature Re-Encoding
(FRE) stage. First, the Backbone stage employs a hierarchi-
cal multi-scale feature extractor such as PointNet++ [40],
thus incorporating multi-scale and multi-resolution feature
learning. Next, to encourage effective feature propaga-
tion between shallow and deep layers, the FCR stage fos-
ters an efficient interaction of the multiple abstraction fea-
tures from the Backbone stage and allows them to refine
each other using a specially devised parameter-less reduc-
tion function. Further, FCR and FRE stages are designed to
preserve features from all the Backbone levels by incorpo-
rating residual connections until the final output layer, thus
encouraging unimpeded gradient flow. Our three-stage de-

sign of MARNet is inspired by one of the recent deep learn-
ing architectural improvements in the 2D image analysis
domain called FishNet [49] that makes use of multi-level
feature interaction to achieve state-of-the-art performance
in 2D image classification, detection, and segmentation.
The key contributions of our paper are as follows:
* We propose a novel unified framework that utilizes the
complementary nature of multi-level abstract features
and encourages them to interact and refine each other.

* We carefully design network layers to preserve point-
features of different granularity such that unmodified
gradients are passed to earlier layers to overcome van-
ishing/exploding gradient problem

* Through extensive experiments, we verify the effec-
tiveness of MARNet by attaining state-of-the-art re-
sults on challenging benchmarks for the tasks: 3D
shape classification, coarse-, middle- and fine-grained
semantic segmentation.

2. Related Work

We delineate the existing works on 3D point cloud anal-

ysis into the following categories:
Multi-view projection-based and volumetric methods:
The multi-view projection-based methods [47, 63, 62, 39,

, 52, 29] project a 3D point cloud onto multiple 2D views
and apply 2D CNN to extract view based features. These
multi-view features are aggregated to get a global repre-
sentation of the shape. Naively projecting 3D objects onto
2D space leads to loss of valuable geometric information.
Other methods [32, 57, 20, 4, 43, 8] project 3D point cloud
onto regular 3D grid voxel. However, voxelization leads
to quantization loss caused by the low grid resolution of
the voxels. The computation increases exponentially with
a linear increase in grid resolution. Kd trees [17] and oc-
tree [22, 41, 54] based methods alleviate these limitations
though they are still dependent on subdivision of volume.
On the contrary, our model learns directly from irregular
point clouds.
Point-wise MLP based Methods: These types of net-
works operate directly on each point. PointNet [38] applies
a shared-MLP on each point independently and aggregates
the point features using max-pooling to obtain a global rep-
resentation. However, it fails to capture the local patterns
as the features are learned independently for every point.
PointNet++ [40] overcomes this limitation by hierarchically
grouping and downsampling the point clouds. Many subse-
quent networks [61, 5, 13, 19, 27] including ours are based
on these networks.
Convolutional Kernel-Based Methods: Kernel-based
networks also involve point-wise MLPs. However, they
have specialized 3D convolutional kernels that operate ei-
ther locally or globally on the point clouds. [56, 11, 60, 31]

layers:

Backbone

upsample
[psamp.

720)

Feature
Cross-Referencing

Feature
Re-Encoding

y(°)
—

fps
—

S

|

(4Q)

upsample

upsample
psamp.

y0)

FC
; : :; ------- o rabbit
y() fps y(-) [global pooling
— | —— —> =3

| Y()=¢() +r() fps : farthest point sampling

—>: main connections ——>: shortcut connections

Figure 2: The overall network architecture containing three stages of feature extraction/refinement: 1) Backbone stage (top),
2) Feature Cross-Referencing stage (middle) and 3) Feature Re-Encoding stage (bottom). (-) = transformation function
&(-)+ residual function (-) as mentioned in Sec. 3. In both Backbone & FRE stage, r(-) is implemented as identity function,
whereas in FCR stage, r(+) is implemented as a reduction function (Sec. 3.3).

use existing methods such as Monte Carlo estimation, Tay-
lor expansion, k-nearest neighbors to model the 3D convo-
lution operation. [21, 31, 37] address the rotation equivari-
ance of point clouds by transforming the problem into polar
coordinates. Several methods [19, 25, 30] cornerstone the
point clouds’ inherent geometric aspects while [27, 59, 28]
focus on context aggregation. In contrast, our method fo-
cuses on preserving and refining the features obtained from
the points and making the best use of the available features.

Graph Based Methods: These networks model point
clouds as a graph with each point representing the vertex
and the connection between the points as edges. [45, 44, 55,
65] model the distance between the points as the weights of
the edges to capture the local geometry of the points. [26, 3]
aim at easing the task of point agglomeration into simple
steps. [50, 24, 6, 53] exploit the spectral domains for graph
creation.

3. Methodology

Our network architecture consists of three stages of fea-
ture extraction and refinement, namely: 1) Backbone stage,
2) Feature Cross-Referencing stage (FCR) stage, and 3)
Feature Re-Encoding (FRE) stage. The proposed network
architecture is shown in Fig. 2.

The stages of our network are explained in Sec. 3.2, Sec.
3.3 and Sec. 3.4 respectively. The unique features of MAR-
Net, such as multi-level feature aggregation and unimpeded

backpropagation of gradients, are discussed in Sec. 3.5.
3.1. Mathematical Notation

The different “levels” of abstraction are labeled as L°
where i € [0, 1, ...] denotes the level index. The collection
of 3D points at level L’ is given as P! = [py,pa, ..., pni]| €
RN"*3 where N’ is the number of 3D points at level L’
and dimensions of 3D points are [z,y,z]. The collec-
tion of point-wise features at level L? is given by F' =

[f(p1), f(D2),- -, f(oni)] € RN™XP' where f(p;) €
RP" denotes the point-wise feature vector corresponding to
the 3D point p;, D' = feature dimension at level L.

Any entity X (such as Level L?, 3D points p?, point fea-
tures f*) corresponding to different stages (Backbone, FCE,
FRE) are denoted by subscripts: Xp, for Backbone, X,
for FCR stage and Xy, for FRE stage. For example, L;,
denotes i*" level of Backbone stage.

3.2. The Backbone Stage
The Backbone stage has [levels denoted as
(L9, Ly, ... L'}, At every level Li,, correspond-

ing 3D points P, (along with its features Fy,) are
hierarchically down-sampled and passed to the next level
Lt ie, Nj, > Ni'. We use the existing network
PointNet++ [40] as our backbone for its simpler design,
multi-level nature of feature extraction and widespread use.
However, other hierarchical feature extractors [27, 25, 55]

can also be used as backbone. Specifically, we use multi-
Scale Grouping (MSG) version of PointNet++ [40] to
capture local neighborhood information at different scales.

First, we briefly introduce our backbone (Point-
Net++ [40]) and then mention the key modifications made
by us for efficient processing. At every level L}, of our
backbone, first, Ng;“ center points are sampled using far-
thest point sampling (FPS) [40] technique. Points within
a sphere of radius d, centered on these points are selected
and a shared local PointNet [38] aggregates their features.
Multiple radii are used to capture local shape variations and
contextual cues. The mathematical formulation of grouping
and feature aggregation can be written as:

() =o({o(fip(@)iVacella—pll<d}) (D

where p € P/, is the center point, ¢ € P}, is within
the distance d from p, ¢(-) is a shared point-wise feature
transformation layer (shared-MLPs) and o (+) is a symmetric
aggregation function (a max pooling layer).

Next, we perform two modifications in the Backbone
for reducing parameters as well as for efficient gradient
propagation: 1) To reduce the parameters, we replace fea-
ture transformation layers (MLPs) with grouped convolu-
tions [18] inspired by [27], where the input channels are
divided into NN, groups and convolved separately. 2) To
facilitate direct gradient propagation in the backbone net-
work, we add residual connections [10] across the grouped
convolution layers. Eqn. 1 is modified to the utilize residual
connections as follows:

w (p) = o({o(fiy (@) + 7 (fi(2));
Vqellg—npllz <d}) (2)

Henceforth, ¢(-) denotes a point-wise feature transfor-
mation function with grouped convolutions and r(-) denotes
a residual function unless otherwise specified. In the Back-
bone stage, r(-) is implemented as an identity function.

In the final backbone level (Légl), the features are ag-
gregated using a global max pooling function and passed to
the FCR stage.

3.3. Feature Cross-Referencing (FCR) Stage

The motivation of this stage is to preserve and refine the
features from backbone by letting the low-level and high-
level abstract features interact with each other. Such in-
teractions between multi-level abstract features are proven
crucial in segmentation [42] as well as recognition [49]
tasks. To achieve this, we carefully design learning blocks
to merge multi-level abstract features.

Let {F9,F),...,F;'} be the features from
{LY, L, ..., Lé;l} levels of Backbone stage. As
Backbone stage has [levels of hierarchy to extract multi-
level abstract features, FCR stage also has [levels to merge

Tt —3 [E— 3NN
interpolate

Figure 3: The functionality of level ¢ in FCR stage. First,
features from the same level of Backbone (f,) and FCR
stage (f}cr) are concatenated. Then, concatenated features
are passed through a point-wise transformation (¢(+)) and
reduction (r(-)) layers. The output features from these two
layers are added and further upsampled using 3NN interpo-
lation [40]) technique to pass to next level.

and refine features from the Backbone. This design is simi-
lar to a decoder network in [42]. FCR levels are numbered
from [— 1 to 0 such that Nj,,. = Nj, N}, < Nj_ ' ie,
the number of points of Backbone and FCR stages at a
particular abstraction level are kept equal. The final level
backbone features Fé; ! are directly considered as F};}.
Next, the functionality of every other FCR level can be

defined in three steps (Fig. 3) as follows:

Fop = concat(Fj.,, Fy,) 3)
rep = O(Fea) +1(Fig))
F};,l = upsample(F}, ;) ®)

In the first step (Eqn. 3), the point-wise feature vectors at
the level ¢ from Backbone and FCR stages are concatenated
together (F,,). Next, in the second step (Eqn. 4), to get
refined features (F’,) from concatenated features, Fi ., is
passed through a point-wise transformation function ¢(-)
and a residual function 7(-). Here, r(+) is implemented as a

reduction function as explained below.

Reduction function r(-): It takes a feature vector f of
D dimension as input and aggregates the features by sum-
ming up k adjacent feature dimensions of the feature vector.
Thus the resulting feature dimension is L%J (D is chosen to
be divisible by k). This reduction function serves two pur-
poses: 1) to reduce the feature dimension without involving
new parameters, and 2) to backpropagate unmodified gradi-
ents to earlier layers. Mathematically, the reduction func-
tion 7(-) can be written as:

k 2k D
()= Do fk o Sl D0 fll| o ©

Jj=k+1 J k

Here, f[j] denotes j*" dimension of feature vector f.

The output features from two transformations (¢(+), r(+))
are added channel-wise to form refined features F?’, - Inthe
third step (Eqn. 5), the refined features are up-sampled to

Fier

free—>) ¢()) Stosiae Fitl
— g [~ fre
== | --s=E
o e =]
N — farthest
point
7‘() sampling

Figure 4: The functionality of level ¢ in FRE stage. The fea-
tures from all three stages (Backbone, FCR, FRE) are con-
catenated and passed through a residual point-wise transfor-
mation layer (¢(-) + r(-)). r(-) is an identity function. The
output features are propagated to the next level by ‘sam-
pling, grouping, and feature averaging’.

the high resolution points at next level F};,l by means of
three nearest neighbor (3NN) interpolation method [40].

3.4. Feature Re-Encoding (FRE) Stage

In the pipeline so far, the multi-level features from the
Backbone stage have been cross-referenced and merged by
FCR stage to capture local and global contextual cues. Sim-
ilar to the Backbone and FCR stages, FRE stage has [levels.
In each of them, the multi-level features from both Back-
bone and FCR stages are combined and re-encoded to sum-
marize multi-abstract features. The functionality of each
FRE level is written in three steps (Fig. 4) as follows:

Fclat = Concat(Ffirev F}crv ng) (7)
'jef = ¢(Fciat) + T(Fciat) (8)
F}jel = downsample(F},;) 9

In the first step (Eqn. 7), features of the same abstrac-
tion level from all stages (Backbone, FCR, FRE) are con-
catenated together to get concatenated features F,. In
the second step (Eqn. 8), concatenated features F,, are
passed through the point-wise shared-MLP layers (¢(-))
with grouped convolutions along with the residual function
(r(+)) to obtain the refined features F7, ;. Here, similar to
the Backbone stage, 7(-) is implemented as an identity func-

tion. Further, in the third step (Eqn. 9), to pass N}'T:l points

to (i 4 1)"™ level (where N7/ < Nj,,), we select N/}
center points using the farthest point sampling technique
and the 3D points are grouped in a Euclidean metric space
around the selected centers. Then, the features correspond-
ing to these points in each group are aggregated and passed
to the next level. This process of grouping and aggregation
is similar to the Backbone stage.

The final level features of FRE stage F};el are used for
predicting the target tasks (shape classification in Sec. 4.1
and semantic segmentation in Sec. 4.2). The specification
of exact architectures for target tasks is given in the supple-
mentary material.

3.5. Unique characteristics of MARNet

The two key characteristics that make our network
unique are:
Multi-Abstraction Feature Aggregation: Our network
aggregates the features of three granularity (from Back-
bone, FCR, FRE) in Re-encoding (FRE) stage. Hence,
the final classification layer receives refined features from
every level of abstraction. Further, this rich and diverse
information can be used by the downstream classifica-
tion/segmentation layers to precisely classify/segment the
objects/parts.
Unimpeded Gradients Propagation: Explod-
ing/Vanishing gradient [12] is a well-known problem
in deep networks that makes the network training unstable.
In our network, the corresponding abstraction levels in
all three stages are connected to the final (classifica-
tion/segmentation) layer through direct connections. For
instance, Backbone features from level Lj, is merged to
FCR stage’s level L’]}cr through feature concatenation (Eqn.
3 & 4) and reduction function, which does not involve any
parameters. Similarly, FCR stage’s features from level
L}CT are passed via FRE stage through a concatenation and
identity residual layer (Eqn. 7 & 8) to the final layer. In
this way, every layer of our network receives the gradients
directly from the loss function in an unmodified way.

3.6. Implementation Details:

MARNet is implemented using Pytorch [35] framework.
We optimize the models using Adam optimizer [5] with
following hyperparameters: initial learning rate = 0.001,
weight decay = 0.01, batch size = 32. The learning rate
is decayed by multiplying with 0.7 after every 20 epochs.
We train our model with an Nvidia GTX 1080Ti GPU. We
elaborate on details about the models and training in the
supplementary material.

4. Experiments

We validate the effectiveness of MARNet through rigor-
ous experimentation on the tasks, namely: 1) Shape classifi-
cation and 2) Coarse-to-fine grained semantic segmentation.

4.1. Shape Classification

Datasets and evaluation metrics: ModelNet40 and
ModelNet10 [58] are well known benchmarks for 3D point
cloud recognition. Both datasets contain objects in the form
of 3D CAD models. ModelNet40 contains 9843 train ob-
jects and 2468 test objects from 40 different object cate-
gories. ModelNet10 has 3991 train samples and 908 test
samples divided into 10 object categories. We evaluate the
performance of our model with two evaluation metrics: 1)
Overall Accuracy (OA) - the ratio number of correctly pre-
dicted objects to the total number of objects in the dataset,

Method #points | OA (%) | mcA (%)
PointNet [38] 1k 89.2 86.2
SO-Net [23] 1k 89.4 -
SCN [59] 1k 90.0 87.6
Kd-Net(depth=10) [17] 1k 90.6 86.3
PointNet++ [40] 1k 90.7 -
Spec-GCN [53] 1k 91.8 -
DGCNN [55] 1k 92.2 90.2
PointCNN [25] 1k 92.2 88.1
PCNN [31] 1k 92.3 -
DensePoint [27] 1k 93.2 -
GeoCNN [19] 1k 93.4 91.1
Ours 1k 93.9 91.1
SO-Net [23] 2k 90.9 87.3
Kd-Net(depth=15) [17] 32k 91.8 88.5
PointNet++ [40] S5k 91.9 -
Spec-GCN [53] 2k 92.1 -
SpiderCNN [60] 5k 92.4 -
SO-Net [23] 5k 93.4 90.8

Table 1: Classification Results on ModelNet40 dataset.
Here, OA: Overall Accuracy, mcA: mean class Accuracy.
(best results are in bold)

Method #points | OA (%) | mcA (%)
ECC [45] 1k 90.8 90.0
Kd-Net(depth=10) [17] 1k 93.3 92.8
KCNet [44] 1k 94.4 -
PCNN [31] 1k 94.9 -
DensePoint [27] 1k 96.6 -
Ours 1k 96.1 95.9
Kd-Net(depth=15) [17] 32k 94.0 93.5
SO-Net [23] 2k 94.1 93.9
SO-Net [23] 5k 95.7 95.5

Table 2: Classification results on ModelNetl0 dataset.
Here, OA: Overall Accuracy, mcA: mean class Accuracy.
(best results are in bold)

2) mean class accuracy (mcA) - the average of the ratio of
correctly predicted objects within a class to the total number
of objects in the class. The OA metric measures the over-
all performance of the model, whereas mcA metric is more
robust to the data imbalance within the classes.

Following [19, 40], during training, we uniformly sam-
ple 1024 points along with point normals as input to the
model. To make a fair comparison with the state-of-the-
art, we use the same data augmentation techniques used
by [27, 17] to anisotropically scale the point clouds ran-
domly in the range of [0.66, 1.5] and translate them in range
[—0.2,0.2]. During testing, we use voting evaluation as fol-
lowed in [27, 38, 40] to average predictions from 10 runs.
Comparison with state-of-the-art methods: The perfor-
mance comparison with the state-of-the-art [38, 23, 59, 17,

, 53, 55, 25, 31, 27, 19] methods in the ModelNet40
dataset is shown in Tab. 1. For convenience, we catego-
rize the methods based on the input number of points for

the model. First, we notice that MARNet significantly out-
performs its backbone method PointNet++ [40], with an
improvement of about +3% in overall accuracy. This im-
provement with a large margin validates our hypothesis that
allowing multi-abstraction features to refine each other and
preserving them from earlier layers is important for point
cloud analysis. Further, our method also outperforms all the
previous state-of-the-arts. Specifically, MARNet improves
the performance over GeoCNN [19] and DensePoint [14]
by +0.5% and +0.7% respectively on the overall accuracy.
In terms of mean class accuracy (mcA), we perform on-
par to GeoCNN [19] and outperform all other methods in
ModelNet40 dataset. Experiments on ModelNet10 dataset
(Tab. 2) shows that MARNet performs on-par with Dense-
Point [27] and outperform all other state-of-the-arts in both
the metrics (OA and mcA).

4.2. Coarse-to-fine grained Semantic Segmentation

Dataset and evaluation metric: PartNet [33] is a seman-
tic (part) segmentation dataset consisting of three levels of
shapes namely: 1) coarse, 2) middle, and 3) fine-grained.
It is build on top of ShapeNet [2] and contains 26,671 3D
models from 24 different object categories with 573,585 an-
notated part instances.

We evaluate our model on all three levels of segmenta-
tion. Following [33], we use part-category mIOU (in %)
as the evaluation metric and compare our results with the
published state-of-the-art methods: PointNet [38], Point-
Net++ [40], SpiderCNN [60], PointCNN [25]. In our ex-
periments, we train individual networks for segmentation
of different object categories and levels (coarse, middle and
fine-grained), as followed in [33]. Precisely, we train 50
separate networks: 24 for coarse-level, 9 for middle-level
and 17 for fine-grained level.

Comparison with state-of-the-art methods: Tab. 3
compares the performance of MARNet with other state-of-
the-art methods on three different tasks: coarse-, middle-
and fine-grained semantic segmentation of objects. The re-
sults are averaged across the three tasks as well as across
the categories for each of the tasks. MARNet performs
significantly better on the coarse-grained task with +1.8%
improvement over the previous best performing method,
PointNet++ [40]. On average, across all three tasks,
our model performs better than the previous state-of-the-
arts with +2.5% and +0.8% over PointNet++ [40] and
PointCNN [25], respectively. The qualitative results shown
in Fig. 5 illustrates the effectiveness of MARNet in seman-
tic segmentation task.

5. Ablation Study

We conduct several ablation studies to verify the ar-
chitectural choices adopted for MARNet, its robustness to
the variations in input data and its computation efficiency.

Method |Avg |Bag Bed Bott Bowl Chair Clock Dish Disp Door Ear Fauc Hat Key Knife Lamp Lap Micro Mug Ref Scis Stora Table Trash Vase
P1 5791425 32 338 58 64.6 332 76 86.8 644 532 58.6 559 656 622 29.7 965 494 80 49.6 864 519 50.5 552 547
P2 37.3|- 20.1 - - 382 - 55.6 - 383 - - - - - 27 - 417 - 355 - 446 343 - -

P3 35.6|- 134 295 - 27.8 284 489 765 304 334 476 - - 329 189 - 372 - 335 - 38 29 348 444
P Avg 51.2142.5 21.8 31.7 58 435 308 602 81.7 444 433 53.1 559 65.6 47.6 252 96.5 42.8 80 39.5 86.4 448 379 45 49.6
P+1 65.5[59.7 51.8 532 67.3 68 48 80.6 89.7 59.3 68.5 64.7 624 622 649 39 96.6 55.7 839 51.8 87.4 58 695 643 644
P+2 445 - 38.8 - - 436 - 553 - 493 - - - - - 326 - 482 - 419 - 49.6 41.1 - -

P+3 425]- 303 414 - 39.2 41.6 50.1 80.7 32.6 384 524 - - 341 253 - 485 - 364 - 40.5 339 46.7 49.8
P+ Avg |[58.1]59.7 40.3 473 673 503 448 62 852 47.1 535 58.6 62.4 622 49.5 323 96.6 50.8 839 434 874 494 482 555 57.1
S1 60.4[57.2 555 545 70.6 674 333 704 90.6 52.6 46.2 59.8 639 649 37.6 302 97 492 83.6 504 75.6 619 50 629 63.8
S2 41.7]- 40.8 - - 39.6 - 59 - 48.1 - - - - - 249 - 476 - 34.8 - 46 345 - -

S3 37 |- 36.2 322 - 30 248 50 80.1 305 37.2 44.1 - - 222 196 - 439 - 39.1 - 44.6 20.1 424 324
S Avg 53.657.2 442 434 70.6 457 29.1 59.8 854 437 41.7 52 639 649 299 249 97 469 83.6 414 75.6 50.8 349 527 48.1
Cl 64.3]66.5 55.8 49.7 61.7 69.6 427 824 922 633 64.1 68.7 723 70.6 62.6 213 97 587 86.5 552 924 614 173 668 63.4
C2 46.5 | - 42.6 - - 474 - 65.1 - 494 - - - - - 229 - 622 - 42.6 - 572 29.1 - -

C3 464 | - 419 418 - 439 363 58.7 825 37.8 489 60.5 - - 341 20.1 - 582 - 429 - 494 213 53.1 589
C Avg 59.8166.5 46.8 458 61.7 53.6 39.5 68.7 87.4 502 56.5 64.6 72.3 70.6 48.4 214 97 59.7 86.5 46.9 92.4 56 22.6 60 61.2
Oursl 67.3|88.3 56.7 424 74 458 713 80.6 91.8 60.1 67.3 65.8 67.4 70.7 60.7 493 97 499 86.1 49.7 90.2 558 724 589 63.6
Ours2 454 |- 354 - - 48 - 63.8 - 42 - - - - - 40 - 495 - 426 - 45 42 - -

Ours3 43.6|- 30.3 585 - 413 16 50.7 83.1 454 465 50.8 - - 485 272 - 64 - 384 - 40.2 16 37.7 46.1
Ours Avg | 60.6 | 88.3 40.8 50.5 74 435 451 65 875 492 56.9 583 67.4 70.7 54.6 38.8 97 545 86.1 43.6 90.2 47 435 483 548
Table 3: Coarse-to-fine grained Semantic Segmentation results on PartNet dataset (part-category mloU %). The five methods

are P:PointNet [38], P+:PointNet++ [40], S:SpiderCNN [60], C:PointCNN [25] and ours:MARNet. These methods are
compared on three levels of segmentation 1:coarse-, 2:middle- and 3:fine-grained for 24 different categories. The average
across the three levels and the average across the shape categories reveal that MARNet performs better or on-par with other

methods. (best values are highlighted).

Ground

Ground
truth 3

Figure 5: Qualitative results on PartNet Coarse-to-fine grained semantic segmentation. Top, Middle, and Bottom rows show
MARNet prediction vs ground truths of 1:coarse-, 2:middle-, and 3:fine-grained segmentation respectively.

Specifically, we conduct experiments to ablate on 1) various
components in the network, 2) the number of input points
to the network, and 3) noi2y input data. Further, we out-
line the advantages of MARNet in terms of memory and
computational complexity (measured by the number of pa-
rameters and FLOPs, respectively). All the ablation studies
are conducted on ModelNet40 [58] classification dataset.

5.1. Componentwise contributions in MARNet

In this section, we conduct experiments to dissect the
contributions of different components in MARNet and show
the results in Tab. 4. First, we train only the backbone
network (modified PointNet++, as in Sec. 3.2) without
data augmentation (DA) and observe the performance as

89.1%. Adding data-augmentation (Sec. 4.1) along with
the Backbone model (Backbone+DA) improves the perfor-
mance by +1.1%. Next, we add FCR, FRE stages to formu-
late MARNet, but without residual function (MARNet(w/o
r(-)) model). This simple architecture add-on significantly
improves the classification accuracy by +2.4%. Such per-
formance increase asserts that allowing multi-level features
to interact with cross-referencing and re-encoding layers
provides more contextual information. Next, we introduce
residual functions r(-) in all stages of MARNet (as ex-
plained in Sec. 3.2, 3.3, 3.4) to improve the training stability
and avoid vanishing/exploding gradients. MARNet(w/ 7(-))
variant passes unmodified gradients from final classification

Model DA point-wise | residual voting | OA(%)
trans. trans.
o() r()
Backbone-only 89.1
Backbone+DA v 90.2
MARNet(w/o 7(+)) | v/ v 92.6
MARNet(w/ r(-)) | v v v 93.4
MARNet v v v v 93.9
Table 4: Ablation studies on various components of

MARNet. Backbone-only = modified PointNet++, Back-
bone+DA = Baseline (modified PointNet++ backbone as
in Sec. 3.2) with Data Augmentation (DA), MARNet(w/o
r(-)) = MARNet without residual connections in all three
stages, MARNet(w/ r(+)) = including the residual connec-
tions and MARNet = complete MARNet evaluated with
voting evaluation, OA = Overall Accuracy

—&— PointNet = PCNN “— DensePoint —#— PointNet —¢— KCNet
PointNet++ —e— SONet —6— MARNet PointNet++ —+— DensePoint

100 100

—&— MARNet

95
=9 80
1) — —%
85 60

80 40

Overall Accuracy (%)
Overall Accuracy (%)

75

20
70

65, -

v S % — o o o
n o

A
©
~
—

1024
1

©
n
~

Number of Inout Points Number of Noisy Points

(@ b
Figure 6: Performance comparison of vaii())us models on
different number of input points (Left) and Noisy input
points (Right). MARNet exhibits only minor degradation
in performance compared to other state-of-the-art models.

layer to all levels in 3 stages and improves the performance
further by +0.8%. Incorporating a voting mechanism for
testing (as followed in [27, 38]) adds +0.5% improvement
to MARNet.

5.2. Ablation on number of input points to the model

The resolution of point clouds tends to affect the per-
formance of the models. Typically, high-resolution point
clouds may provide richer and unambiguous features to aid
classification. To study the effect of the different number
of input points, we test MARNet with varying number of
input points selected by the farthest point sampling method.
Specifically, we test MARNet on 512, 256, 128 and 64 input
points and show the results in Fig. 6a. Compared to several
state-of-the-art methods [38, 40, 31, 23, 55, 27], MARNet
exhibits robust performance with better classification accu-
racy than other methods even for sparse input points. For
example, even with 128 points, MARNet’s accuracy drops
only by 2.9 % from the overall accuracy. We hypothesize
that the ability to preserve the features at all levels of ab-
straction helps MARNet achieve such robustness.

Model #params | #FLOPs | OA
PointNet [38] 3.50M 440M | 89.2
KCNet [44] 0.9M - 91.0
PointNet++ [40] | 1.48M | 1684M |91.9
SpecGCN [53] 2.05M | 1112M |92.1
DGCNN [55] 1.84M | 2767M |92.2
PointCNN [25] | 0.60M | 1581M |92.2
PCNN [31] 8.20M 294M | 92.3
DensePoint [27] | 0.67TM 65IM |93.2
MARNet 1.13M | 1040M |93.9
MARNet Lite 0.68M 260M |93.2

Table 5: Comparison of different models in terms of
the number of parameters and computational complexity
(FLOPs). Here, OA = Overall Accuracy

5.3. Ablation on noisy input points

3D point clouds acquired by real sensors could possess
noisy points, unlike computer-generated CAD models. To
analyze the robustness towards the noise, we simulate noisy
points by including points sampled from a random uniform
distribution between -1 and 1. We test MARNet and other
state-of-the-art methods by including 1, 10, 50, and 100
noisy points to the actual 1024 input points. Fig. 6b re-
veals that MARNet performs on-par to DensePoint and bet-
ter than other state-of-the-art methods.

5.4. Model Complexity

Tab. 5 compares the complexities of different models in
terms of the number of parameters and floating-point op-
erations (FLOPs). MARNet achieves 93.9% accuracy and
has a competitive model complexity with 1.13M parameters
and ~1 GFLOPs. A significant number of parameters are
contributed from our Backbone’s (PointNet++ [40]) MSG
module. To avoid this, we propose a variant of MARNet,
namely “MARNet Lite”, by replacing the MSG layers with
a single scale grouping layer. The resulting MARNet Lite
has significantly less number of FLOPs and parameters with
only a negligible drop in the accuracy.

6. Conclusion

In this work, we proposed a novel three-stage deep learn-
ing architecture named MARNet to extract and refine the
multi-level abstract features for point-cloud analysis. Not
only MARNet aggregates features of different granularity,
but it also preserves earlier layer features till the final layer
and propagates unmodified gradients to earlier layers. With
these unique advantages, MARNet shows promising im-
provements over state-of-the-arts in the tasks of 3D shape
classification and semantic segmentation. As the design of
MARNet architecture is generic, we intend to study the ap-
plicability of this in other 3D point cloud tasks such as point
cloud registration and object detection in our future work.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

(1]

[12]

[13]

(14]

[15]

[16]

Laurent Besacier, Etienne Barnard, Alexey Karpov, and
Tanja Schultz. Automatic speech recognition for under-
resourced languages: A survey. Speech Communication,
56:85-100, 2014. 1

Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat
Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese, Mano-
lis Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi,
and Fisher Yu. ShapeNet: An Information-Rich 3D Model
Repository. Technical Report arXiv:1512.03012 [cs.GR],
Stanford University — Princeton University — Toyota Tech-
nological Institute at Chicago, 2015. 6

Chao Chen, Guanbin Li, Ruijia Xu, Tianshui Chen, Meng
Wang, and Liang Lin. ClusterNet: Deep hierarchical cluster
network with rigorously rotation-invariant representation for
point cloud analysis. In CVPR, pages 4994-5002, 2019. 3
Christopher Choy, JunYoung Gwak, and Silvio Savarese. 4D
spatio-temporal convnets: Minkowski convolutional neural
networks. arXiv preprint arXiv:1904.08755, 2019. 1, 2
Yueqi Duan, Yu Zheng, Jiwen Lu, Jie Zhou, and Qi Tian.
Structural relational reasoning of point clouds. In CVPR,
pages 949-958, 2019. 2

Yifan Feng, Haoxuan You, Zizhao Zhang, Rongrong Ji, and
Yue Gao. Hypergraph neural networks. In AAAI, volume 33,
pages 3558-3565, 2019. 3

Yifan Feng, Zizhao Zhang, Xibin Zhao, Rongrong Ji, and
Yue Gao. GVCNN: Group-view convolutional neural net-
works for 3D shape recognition. In CVPR, pages 264-272,
2018. 2

Matheus Gadelha, Rui Wang, and Subhransu Maji. Mul-
tiresolution tree networks for 3D point cloud processing. In
ECCYV, pages 105-122, 2018. 2

Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we
ready for autonomous driving. In CVPR, pages 3354-3361,
2012. 1

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
pages 770-778, 2016. 1, 4

Pedro Hermosilla, Tobias Ritschel, Pere-Pau Vazquez, Al-
var Vinacua, and Timo Ropinski. Monte carlo convolution
for learning on non-uniformly sampled point clouds. ACM
Trans. Graph., 37(6):235:1-235:12, 2018. 2

Sepp Hochreiter. The vanishing gradient problem during
learning recurrent neural nets and problem solutions. Inter-
national Journal of Uncertainty, Fuzziness and Knowledge-
Based Systems, 6(02):107-116, 1998. 5

Binh-Son Hua, Minh-Khoi Tran, and Sai-Kit Yeung. Point-
wise convolutional neural networks. In CVPR, 2018. 2

Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kil-
ian Q. Weinberger. Densely connected convolutional net-
works. In CVPR, pages 2261-2269, 2017. 1, 2, 6

Diederik P. Kingma and Jimmy Ba. Adam: A
Method for Stochastic Optimization. arXiv e-prints, page
arXiv:1412.6980, Dec. 2014. 5

Greg Kipper and Joseph Rampolla. Augmented Reality: an
emerging technologies guide to AR. Elsevier, 2012. 1

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

(26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

Roman Klokov and Victor Lempitsky. Escape from cells:
Deep kd-networks for the recognition of 3D point cloud
models. In ICCV, pages 863-872, 2017. 2,6

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton.
ImageNet classification with deep convolutional neural net-
works. In NeurlIPS, pages 1106-1114, 2012. 1,2, 4, 11
Shiyi Lan, Ruichi Yu, Gang Yu, and Larry S Davis. Model-
ing local geometric structure of 3D point clouds using Geo-
CNN. arXiv preprint arXiv:1811.07782, 2018. 2,3, 6

Truc Le and Ye Duan. Pointgrid: A deep network for 3d
shape understanding. In CVPR, pages 9204-9214, 2018. 1,
2

Haun Lei, Naveed Akhtar, and Ajmal Mian. Spherical con-
volutional neural network for 3d point clouds. 2018. 3
Huan Lei, Naveed Akhtar, and Ajmal Mian. Octree guided
cnn with spherical kernels for 3D point clouds. arXiv
preprint arXiv:1903.00343, 2019. 2

Jiaxin Li, Ben M. Chen, and Gim Hee Lee. SO-Net: Self-
organizing network for point cloud analysis. In CVPR, pages
9397-9406, 2018. 6, 8

Ruoyu Li, Sheng Wang, Feiyun Zhu, and Junzhou Huang.
Adaptive graph convolutional neural networks. In AAAI,
2018. 3

Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan
Di, and Baoquan Chen. PointCNN: Convolution on x-
transformed points. In NeurIPS, pages 820-830, 2018. 1,
3,6,7,8

Jinxian Liu, Bingbing Ni, Caiyuan Li, Jiancheng Yang, and
Qi Tian. Dynamic points agglomeration for hierarchical
point sets learning. In ICCV, pages 7546-7555, 2019. 3
Yongcheng Liu, Bin Fan, Gaofeng Meng, Jiwen Lu, Shiming
Xiang, and Chunhong Pan. DensePoint: Learning densely
contextual representation for efficient point cloud process-
ing. In ICCV, pages 5239-5248,2019. 1, 2,3,4,6, 8
Yongcheng Liu, Bin Fan, Shiming Xiang, and Chunhong
Pan. Relation-shape convolutional neural network for point
cloud analysis. In CVPR, pages 8895-8904, 2019. 3

Chao Ma, Yulan Guo, Jungang Yang, and Wei An. Learning
multi-view representation with LSTM for 3D shape recogni-
tion and retrieval. I[EEE TMM, 2018. 2

Jiageng Mao, Xiaogang Wang, and Hongsheng Li. Interpo-
lated convolutional networks for 3d point cloud understand-
ing. In ICCV, pages 1578-1587, 2019. 3

Atzmon Matan, Maron Haggai, and Lipman Yaron. Point
convolutional neural networks by extension operators. ACM
TOG, 37(4):1-12,2018. 2, 3,6, 8

Daniel Maturana and Sebastian Scherer. VoxNet: A 3D con-
volutional neural network for real-time object recognition. In
IROS, pages 922-928, 2015. 1,2

Kaichun Mo, Shilin Zhu, Angel X Chang, Li Yi, Subarna
Tripathi, Leonidas J Guibas, and Hao Su. Partnet: A large-
scale benchmark for fine-grained and hierarchical part-level
3d object understanding. In CVPR, pages 909-918, 2019. 6
Daniel W Otter, Julian R Medina, and Jugal K Kalita. A sur-
vey of the usages of deep learning in natural language pro-
cessing. arXiv preprint arXiv:1807.10854, 2018. 1

(35]

(36]

(37]

(38]

(39]

[40]

(41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

(49]

Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Al-
ban Desmaison, Luca Antiga, and Adam Lerer. Automatic
differentiation in pytorch. In NIPS-W, 2017. 5

Javier Andreu Perez, Fani Deligianni, Daniele Ravi, and
Guang-Zhong Yang. Artificial intelligence and robotics.
arXiv preprint arXiv:1803.10813, 2018. 1

Adrien Poulenard, Marie-Julie Rakotosaona, Yann Ponty,
and Maks Ovsjanikov. Effective rotation-invariant point
CNN with spherical harmonics kernels. In 3DV, pages 47—
56,2019. 3

Charles R. Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas.
PointNet: Deep learning on point sets for 3D classification
and segmentation. In CVPR, pages 77-85, 2016. 1, 2, 4, 6,
7,8, 12

Charles R Qi, Hao Su, Matthias NieSner, Angela Dai,
Mengyuan Yan, and Leonidas J Guibas. Volumetric and
multi-view CNNs for object classification on 3D data. In
CVPR, pages 5648-5656, 2016. 1,2

Charles R. Qi, Li Yi, Hao su, and Leonidas J. Guibas. Point-
Net++: Deep hierarchical feature learning on point sets in a
metric space. In NeurIPS, pages 5099-5108, 2017. 1, 2, 3,
4,5,6,7,8,12

Gernot Riegler, Ali Osman Ulusoy, and Andreas Geiger.
OctNet: Learning deep 3D representations at high resolu-
tions. In CVPR, pages 6620-6629, 2017. 2

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-
net: Convolutional networks for biomedical image segmen-
tation. In International Conference on Medical image com-
puting and computer-assisted intervention, pages 234-241.
Springer, 2015. 4

Radu Alexandru Rosu, Peer Schiitt, Jan Quenzel, and Sven
Behnke. Latticenet: Fast point cloud segmentation using per-
mutohedral lattices. arXiv preprint arXiv:1912.05905, 2019.
2

Yiru Shen, Chen Feng, Yaoqing Yang, and Dong Tian. Min-
ing point cloud local structures by kernel correlation and
graph pooling. In CVPR, pages 4548-4557, 2018. 3, 6, 8
M. Simonovsky and N. Komodakis. = Dynamic edge-
conditioned filters in convolutional neural networks on
graphs. In CVPR, pages 29-38, 2017. 3, 6

Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. In /CLR,
pages 1-14, 2015. 1

Hang Su, Subhransu Maji, Evangelos Kalogerakis, and Erik
Learned-Miller. Multi-view convolutional neural networks
for 3D shape recognition. In /CCV, pages 945-953, 2015. 1,
2

Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien
Chouard, Vijaysai Patnaik, Paul Tsui, James Guo, Yin Zhou,
Yuning Chai, Benjamin Caine, et al. Scalability in perception
for autonomous driving: Waymo open dataset. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 24462454, 2020. 1

Shuyang Sun, Jiangmiao Pang, Jianping Shi, Shuai Yi, and
Wanli Ouyang. Fishnet: A versatile backbone for image,
region, and pixel level prediction. In Advances in Neural

10

(501

[51]

(52]

(53]

(54]

[55]

[56]

(571

(58]

(591

(60]

[61]

[62]

[63]

(64]

(65]

Information Processing Systems, pages 760-770, 2018. 1, 2,
4

Gusi Te, Wei Hu, Amin Zheng, and Zongming Guo.
RGCNN: Regularized graph CNN for point cloud segmen-
tation. In ACM MM, pages 746-754, 2018. 3

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, L.ukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In NeurlPS, pages
5998-6008, 2017. 1

Chu Wang, Marcello Pelillo, and Kaleem Siddiqi. Dominant
set clustering and pooling for multi-view 3D object recogni-
tion. arXiv preprint arXiv:1906.01592,2019. 2

Chu Wang, Babak Samari, and Kaleem Siddiqi. Local spec-
tral graph convolution for point set feature learning. In
ECCV, pages 52-66, 2018. 3, 6, 8

Peng-Shuai Wang, Yang Liu, Yu-Xiao Guo, Chun-Yu Sun,
and Xin Tong. O-CNN: Octree-based convolutional neural
networks for 3D shape analysis. ACM TOG, 36(4):72, 2017.
2

Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma,
Michael M. Bronstein, and Justin M. Solomon. Dynamic
graph CNN for learning on point clouds. ACM Trans.
Graph., pages 1-13, 2019. 3,6, 8

Wenxuan Wu, Zhongang Qi, and Li Fuxin. Pointconv: Deep
convolutional networks on 3d point clouds. arXiv preprint
arXiv:1811.07246, 2018. 2

Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Lin-
guang Zhang, Xiaoou Tang, and Jianxiong Xiao. 3D
shapenets: A deep representation for volumetric shapes. In
Proceedings of CVPR, pages 1912-1920, 2015. 1, 2
Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Lin-
guang Zhang, Xiaoou Tang, and Jianxiong Xiao. 3D
ShapeNets: A deep representation for volumetric shapes. In
CVPR, pages 1912-1920, 2015. 5, 7

Saining Xie, Sainan Liu, Zeyu Chen, and Zhuowen Tu. At-
tentional shapecontextnet for point cloud recognition. In
CVPR, pages 46064615, 2018. 3,6

Yifan Xu, Tianqi Fan, Mingye Xu, Long Zeng, and Yu Qiao.
SpiderCNN: Deep learning on point sets with parameterized
convolutional filters. In ECCV, pages 87-102, 2018. 2, 6,7
Jiancheng Yang, Qiang Zhang, Bingbing Ni, Linguo Li,
Jinxian Liu, Mengdie Zhou, and Qi Tian. Modeling point
clouds with self-attention and gumbel subset sampling. arXiv
preprint arXiv:1904.03375, 2019. 2

Ze Yang and Liwei Wang. Learning relationships for multi-
view 3D object recognition. In ICCV, pages 7505-7514,
2019. 1,2

Tan Yu, Jingjing Meng, and Junsong Yuan. Multi-view
harmonized bilinear network for 3D object recognition. In
CVPR, pages 186-194, 2018. 1,2

Yiming Zeng, Yu Hu, Shice Liu, Jing Ye, Yinhe Han, Xi-
aowei Li, and Ninghui Sun. RT3D: Real-time 3D vehicle
detection in lidar point cloud for autonomous driving. /EEE
Robotics and Automation Letters, 3(4):3434-3440, 2018. 1
Kuangen Zhang, Ming Hao, Jing Wang, Clarence W. de
Silva, and Chenglong Fu. Linked dynamic graph CNN:
Learning on point cloud via linking hierarchical features.
arXiv preprint arXiv:1904.10014, 2019. 3

Supplementary Material

1. Outline

In the supplementary section, we report additional abla-
tion studies of our model on the following aspects:

* varying number of groups (/V;) in Grouped convolu-
tion based MLP ¢(-) (Sec. 2.1)

e varying number of levels in the backbone, Fea-
ture Cross-Referencing (FCR) and the Feature Re-
Encoding (FRE) stages (Sec. 2.2)

* Inference time and memory requirements (Sec. 2.3)

More qualitative results on PartNet part-segmentation
can be found in Fig. 1. Additionally, we describe the ex-
act network architecture of MARNet and its training details
in Sec. 3, which will be of help to reproduce the work.

2. Ablation studies (contd.,)

2.1. Varying number of groups (IV;) in Grouped
Convolution based MLPs ¢(-)

In grouped convolution [18], input channels are divided
into IV, groups and convolution kernel is applied separately
on them. Then, the output features are generated indepen-
dently and concatenated to obtain the final output. This type
of grouping imposes sparsity in the connections between the
nodes and helps to reduce the model complexity in terms of
number of parameters.

Tab. 1 shows the influence of different N, on model com-
plexity (#parameters, #floating point operations (FLOPs))
and accuracy of our model. We experiment with values of
N, between 1 and 8. As N, increases, #parameters and
#FLOPs decreases due to the sparsification of the connec-
tions between the nodes. We obtained the highest accuracy
for Ny = 2 and thus, we select this configuration as our
optimal model.

Ng #parameters #FLOPs O.A. (%)
1 1.85M 2080M 93.2
2 1.13M 1040M 93.9
4 0.84M 580M 93.4
8 0.67TM 380M 92.5

Table 1: MARNet complexity and performance for NNV,
groups in grouped convolution. Here, OA = Overall Ac-
curacy.

2.2. Varying number of levels in MARNet

We report the model complexity (#parameters, #FLOPs)
and its performance for different number of levels in MAR-
Net. As mentioned in Sec. 3 of the main paper, MARNet
has / levels of abstraction (down-sampling) in the Backbone

11

#levels #parameters #FLOPs O.A. (%)
BB =3,FCR =2, FRE =2 0.80M 1320M 93.1
BB =4, FCR =3, FRE =3 1.13M 1040M 93.9
BB=5FCR=4,FRE=4 2.06M 3060M 93.5
BB =6,FCR=5,FRE=5 3.42M 8020M 93.0

Table 2: MARNet complexity and performance for varying
number of #levels in MARNet. Here, BB, FCR, GRE denote
number of Backbone-, FCR- and FRE-levels respectively.
The number of FC layers = 3 in all cases. OA = Overall
Accuracy.

model time memory O.A. (%)
MARNet 24ms 1951MB 93.9
MARNet Lite 8ms 1055MB 93.2

Table 3: Inference time and GPU memory requirements
for MARNet and MARNet Lite. Batch size of 32 is used.
“time” denotes average inference time per test sample.

stage given by {L9, L}, ..., L'}, For every level in the
Backbone (except LY;), one corresponding level is added in
FCR and FRE stages respectively.

Tab. 2 gives the performance of MARNet by varying
number of levels. MARNet with 10 levels (Backbone =
3, FCR = 2, FRE = 2, FC = 3) lacks sufficient capacity to
learn multi-abstraction information and therefore, it under-
performs. MARNet with 13 levels (Backbone =4, FCR =3,
FRE = 3, FC layers = 3) gives the best accuracy of 93.9%.
Further increasing the levels increases the model complex-
ity and overfits to the training data while giving sub-par per-
formance.

2.3. Inference time and memory requirements

We compare the computational requirements of our op-
timal models (MARNet and MARNet Lite with 13 levels:
Backbone = 4, FCR = 3, FRE = 3, FC layers = 3) in Tab.
3. The test is executed on a Nvidia GTX 1080Ti GPU with
batch size of 32.

We observe that MARNet is competitive in terms of in-
ference time and memory requirement. However, MARNet
Lite is 3 times faster than MARNet and achieves a near real-
time inference speed with a little drop in accuracy.

3. Network Architecture details

In this section, we provide the exact settings used for
training MARNet for different tasks to facilitate repro-
ducibility. In particular, we give layer-by-layer configura-
tions for the following :

1. MARNet for classification task (Tab. 4)
2. MARNet for part-segmentation task (Tab. 5)

3. MARNet lite for classification task (Tab. 6)

Firstly, we explain the layer types used in our network.
A brief description of the network components along with
the hyper-parameters are explained below.

PointNetSetAbstraction:

hyper-params: (#input channels, grouping radius, #sam-
ples, [MLP output dims])

We use Ball Point Query to select the points within the
grouping radius and choose #samples points among them
to group and aggregate locally using PointNet [38]. Point-
Net is implemented as series of MLPs with output dimen-
sions given in MLP output dims list. Max pooling is used to
aggregate the local point features.

PointNetSetAbstractionMsg:

hyper-params: (#input channels, [list of grouping radii],
[list of #samples], [[list of MLP output dims]])

This layer is Multi-Scale Grouping (MSG) version of the
PointNetSetAbstraction layer. The grouping, transforma-
tion and aggregation operations of PointNet are applied for
multiple radii in parallel and their features are concatenated
in the end.

FeatureCrossReferencing:

hyper-params: (#input channels, [MLP output dims])

The backbone features are concatenated with the input of
this layer. The features are passed through a set of MLPs
and a reduction function before upsampling the points. To
project the point features on the upsampled points using 3-
nearest neighbor (3NN) interpolation technique. The 3NN
technique interpolates the points according to the inverse of
the weighted distance between the points.

FeatureReEncoding:

hyper-params: (#input channels, grouping radius, #sam-
ples, [MLP output dims])

The features from backbone and FCR layers are concate-
nated to this layer’s input. Same set of sampled points from
the backbone are passed to this layer. The grouping and ag-
gregation operation is similar to the PointNetSetAbstraction
layer.

PointNetFeaturePropagation:

hyper-params: (#input channels, [MLP output dims])

This layer is only employed in our part-segmentation net-
work. It is the feature propagation layer of PointNet++ [40].
The features from the encoder at the same level are concate-
nated, transformed and upsampled. The transformation is
implemented as a series of MLPs.

FullyConnectedLayer:

hyper-params: (#input channels, #output channels,

12

dropout ratio %)

The FC layer conprises of a linear layer followed by a batch-
normalization layer and a ReLU non-linearity. Dropout is
applied after every layer except for the final layer which is
used to make the predictions.

All the point-wise transformation layers in the Back-
bone, FCR and FRE stages use grouped convolutions with
number of groups N, = 2 throughout.

In the backbone stage, apart from the input channels
from the previous layer, 6 more channels (xyz+normals) are
concatenated to features before applying PointNet [38] lo-
cally.

3.1. MARNet Classification Network

Our ModelNet40 classification network consists of 13
levels in total: #Backbone levels = 4, #FCR levels = 3,
#FRE levels = 3, number of fully connected (FC) layers =
3. The details of our network design are mentioned in Tab.
4.

3.2. MARNet Part-Segmentation Network

Tab. 5 outlines our network design for the PartNet part-
segmentation task. It consists of 16 levels: #Backbone lev-
els =4, #FCR levels = 3, #FRE levels = 3, PointNetFeature-
Propagation layers = 4, and #FC layers = 2.

3.3. MARNet Lite for classification task

This is the lite version of MARNet in terms of #parame-
ters and #FLOPS. It comprises of the same layout as MAR-
Net classification network except that the MSG layers in the
backbone are replaced by the SSG (single scale grouping)
layers. MARNet Lite’s configuration is listed in Tab. 6.

Predicted Ground-Truth

s

&)

»

<€

<&

>
«
=

4

S A

Predicted

Ground-Truth Predicted Ground-Truth Predicted Ground-Truth

Figure 1: Additional qualitative results of MARNet on PartNet dataset. Columns 1 and 2 show the accurate predictions of
MARNet with respect to the ground-truth. Columns 3 and 4 show some of the incorrect predictions.

Layer Layer Type Layer Parameters Output S.C.
Backbone Stage

BBl _ PointNetSetAbstractionMsg 0,]0.1,0.2,0.4], [16, 32, 128], [[16, 16, 16], [16, 16, 16], [32, 32, 32]] (64,512)

BB2 PointNetSetAbstractionMsg 64,[0.2,0.4,0.6], [32, 64, 128], [[32, 32, 32], [32, 32, 32], [64, 64, 64]] (128,128)

BB3 PointNetSetAbstractionMsg 128, [0.6,0.8,0.9], [64, 96, 128], [[64, 64, 64], [64, 64, 64], [128, 128, 128]] (256, 32)

BB4 PointNetSetAbstraction 256, None, None, [256] (256,1)

Feature Cross Referencing Stage

FCR1 FeatureCrossReferencing 256, [128, 128] (128, 32)

FCR2 FeatureCrossReferencing 128 + 256, [64, 64] (64, 128) BB3
FCR3 FeatureCrossReferencing 64 + 128, [32, 32] (32,512) BB2

Feature Re-Encoding Stage

FRE1 FeatureReEncoding 32+ 64,0.4, 32,96, 96] (96, 128) BB1
FRE2 FeatureReEncoding 96 + 64 + 128, 0.8, 32, [288, 288] (288,32) BB2, FCR2
FRE3 FeatureReEncoding 288 + 128 + 256, None, None, [672,672] (672,1) BB3, FCR1

Classification Stage

FC1 FullyConnectedLayer 672,512,0.4 (512,1)

FC2 FullyConnectedLayer 512,256,0.5 (256,1)

FC3 FullyConnectedLayer 256, #classes (#classes, 1)

Table 4: Network Architecture of MARNet Classification Network. Here, Output = (#output channels, #output points), S.C.
= shortcut connections indicating features passed from previous layers.

13

Layer Layer Type Layer Parameters Output S.C.
Backbone Stage

BBl PointNetSetAbstractionMsg 0,[0.1,0.2,0.4], [16, 32, 128], [[16, 16, 16], [16, 16, 16], [32, 32, 32]] (64,512)

BB2 PointNetSetAbstractionMsg 64,[0.2,0.4,0.6], [32, 64, 128], [[32, 32, 32], [32, 32, 32], [64, 64, 64]] (128,128)

BB3 PointNetSetAbstractionMsg 128, [0.6, 0.8, 0.9], [64, 96, 128], [[64, 64, 64], [64, 64, 64], [128, 128, 128]] (256, 32)

BB4 PointNetSetAbstraction 256, None, None, [256] (256,1)

Feature Cross Referencing Stage

FCR1 FeatureCrossReferencing 256, (128, 128] (128,32)

FCR2 FeatureCrossReferencing 128 + 256, [64, 64] (64, 128) BB3
FCR3 FeatureCrossReferencing 64 + 128, [32, 32] (32,512) BB2

Feature Re-Encoding Stage
FRE1 FeatureReEncoding 32+ 64,0.4, 32, (96, 96] (96, 128) BB1
FRE2 FeatureReEncoding 96 + 64 + 128, 0.8, 32, [288, 288] (288, 32) BB2, FCR2
FRE3 FeatureReEncoding 288 + 128 + 256, None, None, [672, 672] (672,1) BB3, FCR1
Segmentation Stage
FP1 PointNetFeaturePropagation 672 + 288, [256, 256] (256, 32) FRE2
FP2 PointNetFeaturePropagation 256 + 96, [256, 128] (128,128) FREI
FP3 PointNetFeaturePropagation 128 + 32,128, 128] (128,512) FCR3
FP4 PointNetFeaturePropagation 128 + 6, (128, 128] (128,1024)
Point-wise Classification Stage
FC1 FullyConnectedLayer 128,128,0.5 (128,1024)
FC2 FullyConnectedLayer 128, #parts (#parts, 1024)

Table 5: Network Architecture of MARNet Part-Segmentation Network. Here, Output = (#output channels, #output points),
S.C. = shortcut connections indicating features passed from previous layers.

Layer Layer Type Layer Parameters Output S.C.
Backbone Stage

BB1 PointNetSetAbstraction 0,0.2, 32, [32, 32, 32] (64,512)

BB2 PointNetSetAbstraction 32,0.4, 32, (64, 64, 64] (128,128)

BB3 PointNetSetAbstraction 64,0.8,32, [128, 128, 128] (256, 32)

BB4 PointNetSetAbstraction 128, None, None, [256] (256,1)

Feature Cross Referencing Stage

FCR1 FeatureCrossReferencing 256, (128, 128] (128, 32)

FCR2 FeatureCrossReferencing 128 4 128, [64, 64] (64, 128) BB3
FCR3 FeatureCrossReferencing 64 + 64, [32, 32] (32,512) BB2

Feature Re-Encoding Stage
FREI FeatureReEncoding 32 + 32, 0.4, 32, [64, 64] (96, 128) BBI
FRE2 FeatureReEncoding 64 + 64 + 64, 0.8, 32, [192, 192] (288,32) BB2, FCR2
FRE3 FeatureReEncoding 192 + 128 + 128, None, None, [448, 448] (672,1) BB3, FCR1
Classification Stage

FC1 FullyConnectedLayer 448,512,0.4 (512,1)

FC2 FullyConnectedLayer 512,256,0.5 (256,1)

FC3 FullyConnectedLayer 256, #classes (#classes, 1)

Table 6: Network Architecture of MARNet Lite Classification Network. Here, Output = (#output channels, #output points),
S.C. = shortcut connections indicating features passed from previous layers.

14

